漂白强度和激光活化对所选美学复合材料耐久性影响的体外研究。

IF 5.2 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Żaneta Anna Mierzejewska, Kamila Łukaszuk, Bartłomiej Rusztyn, Kacper Maliszewski
{"title":"漂白强度和激光活化对所选美学复合材料耐久性影响的体外研究。","authors":"Żaneta Anna Mierzejewska, Kamila Łukaszuk, Bartłomiej Rusztyn, Kacper Maliszewski","doi":"10.3390/jfb16060193","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to evaluate the effect of different bleaching protocols, including laser-assisted techniques, on the microhardness, surface roughness, and tribological resistance of selected light-cured composites. Three Estelite Universal Flow composites with different flow properties and G-aenial Universal Flo composites were tested. Each group underwent bleaching procedures using Opalescence agents at 10%, 16%, and 40% concentrations, with and without laser activation. Surface microhardness was assessed using the Vickers method, roughness was measured with 3D confocal laser microscopy, and friction coefficients and wear patterns were evaluated using tribological testing. All bleaching protocols resulted in reduced microhardness and increased surface roughness. The most significant changes were observed after treatment with 40% hydrogen peroxide. Laser application, particularly at 16% concentration of carbamide peroxide, helped to partially mitigate these effects in some materials. Bleaching procedures, especially those involving high peroxide concentrations, significantly deteriorated the surface properties of dental composites, which may have clinical implications for the patients.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 6","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194680/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Influence of Bleaching Intensity and Laser Activation on the Durability of Selected Aesthetic Composites-An In Vitro Study.\",\"authors\":\"Żaneta Anna Mierzejewska, Kamila Łukaszuk, Bartłomiej Rusztyn, Kacper Maliszewski\",\"doi\":\"10.3390/jfb16060193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to evaluate the effect of different bleaching protocols, including laser-assisted techniques, on the microhardness, surface roughness, and tribological resistance of selected light-cured composites. Three Estelite Universal Flow composites with different flow properties and G-aenial Universal Flo composites were tested. Each group underwent bleaching procedures using Opalescence agents at 10%, 16%, and 40% concentrations, with and without laser activation. Surface microhardness was assessed using the Vickers method, roughness was measured with 3D confocal laser microscopy, and friction coefficients and wear patterns were evaluated using tribological testing. All bleaching protocols resulted in reduced microhardness and increased surface roughness. The most significant changes were observed after treatment with 40% hydrogen peroxide. Laser application, particularly at 16% concentration of carbamide peroxide, helped to partially mitigate these effects in some materials. Bleaching procedures, especially those involving high peroxide concentrations, significantly deteriorated the surface properties of dental composites, which may have clinical implications for the patients.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194680/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16060193\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16060193","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是评估不同的漂白方案,包括激光辅助技术,对选定的光固化复合材料的显微硬度,表面粗糙度和摩擦学抗性的影响。对3种不同流动性能的Estelite Universal Flow复合材料和G-aenial Universal Flow复合材料进行了测试。每组分别使用浓度为10%、16%和40%的乳化剂进行漂白,有激光激活和没有激光激活。使用维氏法评估表面显微硬度,使用三维共聚焦激光显微镜测量粗糙度,使用摩擦学测试评估摩擦系数和磨损模式。所有漂白方案都降低了显微硬度,增加了表面粗糙度。用40%过氧化氢治疗后观察到最显著的变化。激光应用,特别是在过氧化脲浓度为16%的情况下,有助于部分减轻某些材料的这些影响。漂白过程,特别是涉及高过氧化氢浓度的漂白过程,会显著恶化牙科复合材料的表面特性,这可能对患者产生临床影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Influence of Bleaching Intensity and Laser Activation on the Durability of Selected Aesthetic Composites-An In Vitro Study.

The aim of this study was to evaluate the effect of different bleaching protocols, including laser-assisted techniques, on the microhardness, surface roughness, and tribological resistance of selected light-cured composites. Three Estelite Universal Flow composites with different flow properties and G-aenial Universal Flo composites were tested. Each group underwent bleaching procedures using Opalescence agents at 10%, 16%, and 40% concentrations, with and without laser activation. Surface microhardness was assessed using the Vickers method, roughness was measured with 3D confocal laser microscopy, and friction coefficients and wear patterns were evaluated using tribological testing. All bleaching protocols resulted in reduced microhardness and increased surface roughness. The most significant changes were observed after treatment with 40% hydrogen peroxide. Laser application, particularly at 16% concentration of carbamide peroxide, helped to partially mitigate these effects in some materials. Bleaching procedures, especially those involving high peroxide concentrations, significantly deteriorated the surface properties of dental composites, which may have clinical implications for the patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信