Zhijie Zhao, Huabao Cai, Wenyang Nie, Xiaojing Wang, Zhenzhen Zhao, Fu Zhao, Yisheng Chen, Zhiwen Luo, Zhiheng Lin, Li Lin, Yantao Ding
{"title":"GDF15在癌症相关成纤维细胞中的异位表达通过GFRAL/RET级联增强黑色素瘤免疫抑制。","authors":"Zhijie Zhao, Huabao Cai, Wenyang Nie, Xiaojing Wang, Zhenzhen Zhao, Fu Zhao, Yisheng Chen, Zhiwen Luo, Zhiheng Lin, Li Lin, Yantao Ding","doi":"10.1136/jitc-2024-011036","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A key aspect of tumor biology is the involvement of cancer-associated fibroblasts (CAFs) in shaping the immunosuppressive microenvironment. However, the dynamic and complex key roles of CAFs in the melanoma immune microenvironment have not been elucidated.</p><p><strong>Methods: </strong>The CAFs landscape in melanoma was characterized using single-cell RNA-seq and spatial transcriptomics. Molecular dynamics simulations were employed to validate the interactions between CAFs and melanoma cells. Bulk RNA-seq was used to establish a prognostic model. To validate the expression of key targets, western blotting, quantitative real-time PCR, and ELISA were performed. The molecular interactions were confirmed via co-immunoprecipitation, chromatin immunoprecipitation, and luciferase gene reporter assays. In-depth molecular mechanisms were explored using lentiviral transfection, cell co-culture experiments, recombinant protein rescue experiments, flow cytometry, knockout mice, and Cre-loxP system mice.</p><p><strong>Results: </strong>This study identified a unique group of CAFs expressing high levels of growth differentiation factor 15 (GDF15). The paracrine secretion of GDF15 was regulated by the transcription factor FOXP1, which subsequently binds to the TGFBR2 receptor on melanoma cells, driving their proliferation and metastatic capacity. In addition, CAFs-derived GDF15 interacts with the GFRAL receptor on melanoma cells, thereby promoting RET phosphorylation and triggering downstream signaling axes, inducing increased tumor cell stemness and secretion of inflammatory factors CCL18 and TGF-β. This cascade reaction ultimately induces macrophage polarization to the immunosuppressive M2 phenotype, assists in the establishment of an immunosuppressive microenvironment, and leads to accelerated melanoma lung metastasis.</p><p><strong>Conclusion: </strong>By integrating single-cell RNA-seq, spatial transcriptomics, bulk RNA-seq, molecular dynamics simulation and complete experimental design, this study comprehensively characterized that ectopic expression of CAFs-derived GDF15 can act as an accomplice in melanoma progression by inducing increased tumor cell stemness and macrophage M2 polarization, reshaping the immune landscape of melanoma, and providing new ideas and new targets for precision immunotherapy of melanoma.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 6","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ectopic expression of GDF15 in cancer-associated fibroblasts enhances melanoma immunosuppression via the GFRAL/RET cascade.\",\"authors\":\"Zhijie Zhao, Huabao Cai, Wenyang Nie, Xiaojing Wang, Zhenzhen Zhao, Fu Zhao, Yisheng Chen, Zhiwen Luo, Zhiheng Lin, Li Lin, Yantao Ding\",\"doi\":\"10.1136/jitc-2024-011036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A key aspect of tumor biology is the involvement of cancer-associated fibroblasts (CAFs) in shaping the immunosuppressive microenvironment. However, the dynamic and complex key roles of CAFs in the melanoma immune microenvironment have not been elucidated.</p><p><strong>Methods: </strong>The CAFs landscape in melanoma was characterized using single-cell RNA-seq and spatial transcriptomics. Molecular dynamics simulations were employed to validate the interactions between CAFs and melanoma cells. Bulk RNA-seq was used to establish a prognostic model. To validate the expression of key targets, western blotting, quantitative real-time PCR, and ELISA were performed. The molecular interactions were confirmed via co-immunoprecipitation, chromatin immunoprecipitation, and luciferase gene reporter assays. In-depth molecular mechanisms were explored using lentiviral transfection, cell co-culture experiments, recombinant protein rescue experiments, flow cytometry, knockout mice, and Cre-loxP system mice.</p><p><strong>Results: </strong>This study identified a unique group of CAFs expressing high levels of growth differentiation factor 15 (GDF15). The paracrine secretion of GDF15 was regulated by the transcription factor FOXP1, which subsequently binds to the TGFBR2 receptor on melanoma cells, driving their proliferation and metastatic capacity. In addition, CAFs-derived GDF15 interacts with the GFRAL receptor on melanoma cells, thereby promoting RET phosphorylation and triggering downstream signaling axes, inducing increased tumor cell stemness and secretion of inflammatory factors CCL18 and TGF-β. This cascade reaction ultimately induces macrophage polarization to the immunosuppressive M2 phenotype, assists in the establishment of an immunosuppressive microenvironment, and leads to accelerated melanoma lung metastasis.</p><p><strong>Conclusion: </strong>By integrating single-cell RNA-seq, spatial transcriptomics, bulk RNA-seq, molecular dynamics simulation and complete experimental design, this study comprehensively characterized that ectopic expression of CAFs-derived GDF15 can act as an accomplice in melanoma progression by inducing increased tumor cell stemness and macrophage M2 polarization, reshaping the immune landscape of melanoma, and providing new ideas and new targets for precision immunotherapy of melanoma.</p>\",\"PeriodicalId\":14820,\"journal\":{\"name\":\"Journal for Immunotherapy of Cancer\",\"volume\":\"13 6\",\"pages\":\"\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for Immunotherapy of Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jitc-2024-011036\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-011036","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Ectopic expression of GDF15 in cancer-associated fibroblasts enhances melanoma immunosuppression via the GFRAL/RET cascade.
Background: A key aspect of tumor biology is the involvement of cancer-associated fibroblasts (CAFs) in shaping the immunosuppressive microenvironment. However, the dynamic and complex key roles of CAFs in the melanoma immune microenvironment have not been elucidated.
Methods: The CAFs landscape in melanoma was characterized using single-cell RNA-seq and spatial transcriptomics. Molecular dynamics simulations were employed to validate the interactions between CAFs and melanoma cells. Bulk RNA-seq was used to establish a prognostic model. To validate the expression of key targets, western blotting, quantitative real-time PCR, and ELISA were performed. The molecular interactions were confirmed via co-immunoprecipitation, chromatin immunoprecipitation, and luciferase gene reporter assays. In-depth molecular mechanisms were explored using lentiviral transfection, cell co-culture experiments, recombinant protein rescue experiments, flow cytometry, knockout mice, and Cre-loxP system mice.
Results: This study identified a unique group of CAFs expressing high levels of growth differentiation factor 15 (GDF15). The paracrine secretion of GDF15 was regulated by the transcription factor FOXP1, which subsequently binds to the TGFBR2 receptor on melanoma cells, driving their proliferation and metastatic capacity. In addition, CAFs-derived GDF15 interacts with the GFRAL receptor on melanoma cells, thereby promoting RET phosphorylation and triggering downstream signaling axes, inducing increased tumor cell stemness and secretion of inflammatory factors CCL18 and TGF-β. This cascade reaction ultimately induces macrophage polarization to the immunosuppressive M2 phenotype, assists in the establishment of an immunosuppressive microenvironment, and leads to accelerated melanoma lung metastasis.
Conclusion: By integrating single-cell RNA-seq, spatial transcriptomics, bulk RNA-seq, molecular dynamics simulation and complete experimental design, this study comprehensively characterized that ectopic expression of CAFs-derived GDF15 can act as an accomplice in melanoma progression by inducing increased tumor cell stemness and macrophage M2 polarization, reshaping the immune landscape of melanoma, and providing new ideas and new targets for precision immunotherapy of melanoma.
期刊介绍:
The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.