Dorothy Wallace, Michael Palace, Lucas Eli Price, Xun Shi
{"title":"美国东北部生境莱姆病病原菌的出现时间","authors":"Dorothy Wallace, Michael Palace, Lucas Eli Price, Xun Shi","doi":"10.3390/insects16060631","DOIUrl":null,"url":null,"abstract":"<p><p>Ticks carry a range of pathogens, the best known of which causes Lyme disease, prevalent in the northeastern United States. Emerging diseases do not yet consist of a wide range of Lyme diseases, raising the question of how long it takes for a newly introduced tick-borne disease to establish itself. The aim of this study was to address this question, with the agent of Lyme disease used as the test case. A prior process-based model of the <i>Ixodes scapularis</i> (Say 1821) life cycle and the transmission of <i>Borrelia burgdorferi</i> (Burgdorfer 1982) between this tick and its various hosts was used to predict the dynamics of disease introduction into a new area. The importance of temperature, infection probabilities, and tick host populations, relative to that of other factors, was established by a global sensitivity analysis using Latin hypercube sampling. The results of those samples were analyzed to determine the time to near-equilibrium. Eight locations in New Hampshire were chosen for high/low temperature, high/low mouse, and high/low deer values. Mammal abundance was estimated by relating the known mammal density from previous studies to a MaxEnt analysis output. The time required to reach <i>Borrelia</i> endemicity in the ticks of New Hampshire ranged from 8 to 20 years in regions where the tick population is viable, with a strong dependency on susceptible tick host populations.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time to Emergence of the Lyme Disease Pathogen in Habitats of the Northeastern U.S.A.\",\"authors\":\"Dorothy Wallace, Michael Palace, Lucas Eli Price, Xun Shi\",\"doi\":\"10.3390/insects16060631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ticks carry a range of pathogens, the best known of which causes Lyme disease, prevalent in the northeastern United States. Emerging diseases do not yet consist of a wide range of Lyme diseases, raising the question of how long it takes for a newly introduced tick-borne disease to establish itself. The aim of this study was to address this question, with the agent of Lyme disease used as the test case. A prior process-based model of the <i>Ixodes scapularis</i> (Say 1821) life cycle and the transmission of <i>Borrelia burgdorferi</i> (Burgdorfer 1982) between this tick and its various hosts was used to predict the dynamics of disease introduction into a new area. The importance of temperature, infection probabilities, and tick host populations, relative to that of other factors, was established by a global sensitivity analysis using Latin hypercube sampling. The results of those samples were analyzed to determine the time to near-equilibrium. Eight locations in New Hampshire were chosen for high/low temperature, high/low mouse, and high/low deer values. Mammal abundance was estimated by relating the known mammal density from previous studies to a MaxEnt analysis output. The time required to reach <i>Borrelia</i> endemicity in the ticks of New Hampshire ranged from 8 to 20 years in regions where the tick population is viable, with a strong dependency on susceptible tick host populations.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects16060631\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16060631","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Time to Emergence of the Lyme Disease Pathogen in Habitats of the Northeastern U.S.A.
Ticks carry a range of pathogens, the best known of which causes Lyme disease, prevalent in the northeastern United States. Emerging diseases do not yet consist of a wide range of Lyme diseases, raising the question of how long it takes for a newly introduced tick-borne disease to establish itself. The aim of this study was to address this question, with the agent of Lyme disease used as the test case. A prior process-based model of the Ixodes scapularis (Say 1821) life cycle and the transmission of Borrelia burgdorferi (Burgdorfer 1982) between this tick and its various hosts was used to predict the dynamics of disease introduction into a new area. The importance of temperature, infection probabilities, and tick host populations, relative to that of other factors, was established by a global sensitivity analysis using Latin hypercube sampling. The results of those samples were analyzed to determine the time to near-equilibrium. Eight locations in New Hampshire were chosen for high/low temperature, high/low mouse, and high/low deer values. Mammal abundance was estimated by relating the known mammal density from previous studies to a MaxEnt analysis output. The time required to reach Borrelia endemicity in the ticks of New Hampshire ranged from 8 to 20 years in regions where the tick population is viable, with a strong dependency on susceptible tick host populations.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.