{"title":"短期热胁迫对杨梅小绥螨发育、繁殖及种群参数的影响","authors":"Hajar Pakyari, Rostislav Zemek","doi":"10.3390/insects16060596","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature is a critical factor affecting the development and population dynamics of many organisms. An organism's ability to withstand extreme temperature events, such as heat waves, will become increasingly important as the severity, duration, and frequency of these events continue to rise worldwide due to global warming. Knowledge on the effects of heat stress on both pests and their natural enemies will thus be crucial for keeping biological control and pest control programs effective in future. This research aimed to study the effect of short-term heat stress on the predatory mite <i>Phytoseiulus persimilis</i>, which is one of the important natural enemies utilized as a biocontrol agent against spider mites such as <i>Tetranychus urticae</i>. The experiments assessed the immature developmental time of <i>P. persimilis</i> after a four-hour incubation of eggs at high temperatures, namely 36, 38, 40, and 42 °C, as well as 85 ± 5% RH and a 16:8 h photoperiod (L:D). After adult females emerged, they were exposed to the same conditions again and the population parameters were monitored. The results demonstrated that the immature development time decreased as temperature increased, with the shortest development duration of 5.30 days seen in eggs exposed to 40 °C, while the eggs exposed to 42 °C did not hatch. Female and male adult longevity decreased significantly as the temperature increased. Fecundity, the adult pre-ovipositional period, and the total pre-ovipositional period were lowest following the 40 °C treatment. The population parameters of <i>P. persimilis</i>, including <i>r</i> and <i>λ</i>, reached their highest values in mites treated at 36 °C, and were significantly higher than in the control group. Addressing these challenges through targeted research and adaptive management is essential to sustaining the efficiency of <i>P. persimilis</i> in biocontrol programs, particularly in the context of global climate change.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193448/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Short-Term Heat Stress on the Development, Reproduction, and Demographic Parameters of <i>Phytoseiulus persimilis</i> (Acari: Phytoseiidae).\",\"authors\":\"Hajar Pakyari, Rostislav Zemek\",\"doi\":\"10.3390/insects16060596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temperature is a critical factor affecting the development and population dynamics of many organisms. An organism's ability to withstand extreme temperature events, such as heat waves, will become increasingly important as the severity, duration, and frequency of these events continue to rise worldwide due to global warming. Knowledge on the effects of heat stress on both pests and their natural enemies will thus be crucial for keeping biological control and pest control programs effective in future. This research aimed to study the effect of short-term heat stress on the predatory mite <i>Phytoseiulus persimilis</i>, which is one of the important natural enemies utilized as a biocontrol agent against spider mites such as <i>Tetranychus urticae</i>. The experiments assessed the immature developmental time of <i>P. persimilis</i> after a four-hour incubation of eggs at high temperatures, namely 36, 38, 40, and 42 °C, as well as 85 ± 5% RH and a 16:8 h photoperiod (L:D). After adult females emerged, they were exposed to the same conditions again and the population parameters were monitored. The results demonstrated that the immature development time decreased as temperature increased, with the shortest development duration of 5.30 days seen in eggs exposed to 40 °C, while the eggs exposed to 42 °C did not hatch. Female and male adult longevity decreased significantly as the temperature increased. Fecundity, the adult pre-ovipositional period, and the total pre-ovipositional period were lowest following the 40 °C treatment. The population parameters of <i>P. persimilis</i>, including <i>r</i> and <i>λ</i>, reached their highest values in mites treated at 36 °C, and were significantly higher than in the control group. Addressing these challenges through targeted research and adaptive management is essential to sustaining the efficiency of <i>P. persimilis</i> in biocontrol programs, particularly in the context of global climate change.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193448/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects16060596\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16060596","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Effects of Short-Term Heat Stress on the Development, Reproduction, and Demographic Parameters of Phytoseiulus persimilis (Acari: Phytoseiidae).
Temperature is a critical factor affecting the development and population dynamics of many organisms. An organism's ability to withstand extreme temperature events, such as heat waves, will become increasingly important as the severity, duration, and frequency of these events continue to rise worldwide due to global warming. Knowledge on the effects of heat stress on both pests and their natural enemies will thus be crucial for keeping biological control and pest control programs effective in future. This research aimed to study the effect of short-term heat stress on the predatory mite Phytoseiulus persimilis, which is one of the important natural enemies utilized as a biocontrol agent against spider mites such as Tetranychus urticae. The experiments assessed the immature developmental time of P. persimilis after a four-hour incubation of eggs at high temperatures, namely 36, 38, 40, and 42 °C, as well as 85 ± 5% RH and a 16:8 h photoperiod (L:D). After adult females emerged, they were exposed to the same conditions again and the population parameters were monitored. The results demonstrated that the immature development time decreased as temperature increased, with the shortest development duration of 5.30 days seen in eggs exposed to 40 °C, while the eggs exposed to 42 °C did not hatch. Female and male adult longevity decreased significantly as the temperature increased. Fecundity, the adult pre-ovipositional period, and the total pre-ovipositional period were lowest following the 40 °C treatment. The population parameters of P. persimilis, including r and λ, reached their highest values in mites treated at 36 °C, and were significantly higher than in the control group. Addressing these challenges through targeted research and adaptive management is essential to sustaining the efficiency of P. persimilis in biocontrol programs, particularly in the context of global climate change.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.