{"title":"东北地区新发害虫象形单翅虫(monoolepta hieroglyphica, Motschulsky, 1858)(鞘翅目:金蛉科)的发生及遗传变异。","authors":"Wei Sun, Xiuhua Zhang, Jiachun Zhou, Yuebo Gao","doi":"10.3390/insects16060605","DOIUrl":null,"url":null,"abstract":"<p><p>The northeast region of China plays a crucial role in crop production. The leaf beetle <i>Monolepta hieroglyphica</i> (Motschulsky, 1858) (Coleoptera: Chrysomelidae) has emerged as a potential threat to food security in the region. With a wide distribution spanning Asia and Russia, this beetle affects various crops. However, limited information is available regarding its occurrence patterns and genetic diversity among major crops in the region. Based on systematic observations across various hosts, coupled with genetic variation analysis using mitochondrial DNA markers, the main results were as follows. Leaf beetle occurrence varied among hosts, peaking from late July to mid-August, with maize and soybean fields exhibiting higher infestation rates compared with other crops. Notably, late-cultivated maize fields harbored the highest beetle numbers due to the species' preference for young leaves. The host transfer trajectory may have originated in soybean and weeds, with subsequent alternation between host plants and other crops, before the final migration to cabbage and late-cultivated maize fields. Genetic analysis revealed nine COI haplotypes, four COII haplotypes, eleven Cytb haplotypes, and twenty-one combined haplotypes. No clear relationship existed between genetic diversity and occurrence, and no distinct host-based genetic patterns emerged from neighbor-joining tree and haplotype network analyses. High gene flow rates were observed, likely contributing to decreased genetic variation. An analysis of molecular variance results indicated major genetic variation within populations, although genetic distance and haplotype distribution indicated divergence among host populations. These results provide foundational data for developing effective <i>M. hieroglyphica</i> pest management strategies.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193814/pdf/","citationCount":"0","resultStr":"{\"title\":\"Occurrence and Genetic Variation of <i>Monolepta hieroglyphica</i> (Motschulsky, 1858) (Coleoptera: Chrysomelidae), a Newly Emerging Pest, Among Hosts in Northeast China.\",\"authors\":\"Wei Sun, Xiuhua Zhang, Jiachun Zhou, Yuebo Gao\",\"doi\":\"10.3390/insects16060605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The northeast region of China plays a crucial role in crop production. The leaf beetle <i>Monolepta hieroglyphica</i> (Motschulsky, 1858) (Coleoptera: Chrysomelidae) has emerged as a potential threat to food security in the region. With a wide distribution spanning Asia and Russia, this beetle affects various crops. However, limited information is available regarding its occurrence patterns and genetic diversity among major crops in the region. Based on systematic observations across various hosts, coupled with genetic variation analysis using mitochondrial DNA markers, the main results were as follows. Leaf beetle occurrence varied among hosts, peaking from late July to mid-August, with maize and soybean fields exhibiting higher infestation rates compared with other crops. Notably, late-cultivated maize fields harbored the highest beetle numbers due to the species' preference for young leaves. The host transfer trajectory may have originated in soybean and weeds, with subsequent alternation between host plants and other crops, before the final migration to cabbage and late-cultivated maize fields. Genetic analysis revealed nine COI haplotypes, four COII haplotypes, eleven Cytb haplotypes, and twenty-one combined haplotypes. No clear relationship existed between genetic diversity and occurrence, and no distinct host-based genetic patterns emerged from neighbor-joining tree and haplotype network analyses. High gene flow rates were observed, likely contributing to decreased genetic variation. An analysis of molecular variance results indicated major genetic variation within populations, although genetic distance and haplotype distribution indicated divergence among host populations. These results provide foundational data for developing effective <i>M. hieroglyphica</i> pest management strategies.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193814/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects16060605\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16060605","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Occurrence and Genetic Variation of Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae), a Newly Emerging Pest, Among Hosts in Northeast China.
The northeast region of China plays a crucial role in crop production. The leaf beetle Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae) has emerged as a potential threat to food security in the region. With a wide distribution spanning Asia and Russia, this beetle affects various crops. However, limited information is available regarding its occurrence patterns and genetic diversity among major crops in the region. Based on systematic observations across various hosts, coupled with genetic variation analysis using mitochondrial DNA markers, the main results were as follows. Leaf beetle occurrence varied among hosts, peaking from late July to mid-August, with maize and soybean fields exhibiting higher infestation rates compared with other crops. Notably, late-cultivated maize fields harbored the highest beetle numbers due to the species' preference for young leaves. The host transfer trajectory may have originated in soybean and weeds, with subsequent alternation between host plants and other crops, before the final migration to cabbage and late-cultivated maize fields. Genetic analysis revealed nine COI haplotypes, four COII haplotypes, eleven Cytb haplotypes, and twenty-one combined haplotypes. No clear relationship existed between genetic diversity and occurrence, and no distinct host-based genetic patterns emerged from neighbor-joining tree and haplotype network analyses. High gene flow rates were observed, likely contributing to decreased genetic variation. An analysis of molecular variance results indicated major genetic variation within populations, although genetic distance and haplotype distribution indicated divergence among host populations. These results provide foundational data for developing effective M. hieroglyphica pest management strategies.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.