Luísa Maria Inácio da Silva, Larissa Krokovsky, Rafaela Cassiano Matos, Gabriel da Luz Wallau, Marcelo Henrique Santos Paiva
{"title":"蚊媒虫媒病毒监测新诱捕系统的开发。","authors":"Luísa Maria Inácio da Silva, Larissa Krokovsky, Rafaela Cassiano Matos, Gabriel da Luz Wallau, Marcelo Henrique Santos Paiva","doi":"10.3390/insects16060637","DOIUrl":null,"url":null,"abstract":"<p><p>Mosquitoes of the <i>Aedes</i> and <i>Culex</i> genera are primary vectors of arboviruses such as the dengue, Zika, chikungunya (CHIKV), Oropouche, and West Nile viruses, causing millions of infections annually. Standard virus detection in mosquitoes requires capturing, transporting, and processing samples with a cold chain to preserve RNA, which is challenging in resource-limited areas. FTA cards preserve viral RNA at room temperature and have been used to collect mosquito saliva, a key sample for assessing transmission. However, most FTA-based traps require electricity or CO<sub>2</sub>, limiting use in low-resource settings. This study adapted and evaluated the BR-ArboTrap, a low-cost trap derived from an oviposition trap, integrating a sugar-based attractant with FTA cards to collect mosquito saliva, without electricity or refrigeration. <i>Aedes aegypti</i> exposed to CHIKV were used in three experiments to evaluate: (i) RNA preservation under different conditions, (ii) the minimum number of positive mosquitoes for detection, and (iii) RNA amounts on FTA versus blood. RT-qPCR detected CHIKV RNA in 90% of FTA cards and 96% of exposed mosquitoes. RNA remained stable under varying conditions, with no significant difference compared to blood. BR-ArboTrap is an effective, affordable, and field-ready tool to enhance arbovirus surveillance in remote and low-resource areas.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193242/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a New Trapping System with Potential Implementation as a Tool for Mosquito-Borne Arbovirus Surveillance.\",\"authors\":\"Luísa Maria Inácio da Silva, Larissa Krokovsky, Rafaela Cassiano Matos, Gabriel da Luz Wallau, Marcelo Henrique Santos Paiva\",\"doi\":\"10.3390/insects16060637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mosquitoes of the <i>Aedes</i> and <i>Culex</i> genera are primary vectors of arboviruses such as the dengue, Zika, chikungunya (CHIKV), Oropouche, and West Nile viruses, causing millions of infections annually. Standard virus detection in mosquitoes requires capturing, transporting, and processing samples with a cold chain to preserve RNA, which is challenging in resource-limited areas. FTA cards preserve viral RNA at room temperature and have been used to collect mosquito saliva, a key sample for assessing transmission. However, most FTA-based traps require electricity or CO<sub>2</sub>, limiting use in low-resource settings. This study adapted and evaluated the BR-ArboTrap, a low-cost trap derived from an oviposition trap, integrating a sugar-based attractant with FTA cards to collect mosquito saliva, without electricity or refrigeration. <i>Aedes aegypti</i> exposed to CHIKV were used in three experiments to evaluate: (i) RNA preservation under different conditions, (ii) the minimum number of positive mosquitoes for detection, and (iii) RNA amounts on FTA versus blood. RT-qPCR detected CHIKV RNA in 90% of FTA cards and 96% of exposed mosquitoes. RNA remained stable under varying conditions, with no significant difference compared to blood. BR-ArboTrap is an effective, affordable, and field-ready tool to enhance arbovirus surveillance in remote and low-resource areas.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects16060637\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16060637","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Development of a New Trapping System with Potential Implementation as a Tool for Mosquito-Borne Arbovirus Surveillance.
Mosquitoes of the Aedes and Culex genera are primary vectors of arboviruses such as the dengue, Zika, chikungunya (CHIKV), Oropouche, and West Nile viruses, causing millions of infections annually. Standard virus detection in mosquitoes requires capturing, transporting, and processing samples with a cold chain to preserve RNA, which is challenging in resource-limited areas. FTA cards preserve viral RNA at room temperature and have been used to collect mosquito saliva, a key sample for assessing transmission. However, most FTA-based traps require electricity or CO2, limiting use in low-resource settings. This study adapted and evaluated the BR-ArboTrap, a low-cost trap derived from an oviposition trap, integrating a sugar-based attractant with FTA cards to collect mosquito saliva, without electricity or refrigeration. Aedes aegypti exposed to CHIKV were used in three experiments to evaluate: (i) RNA preservation under different conditions, (ii) the minimum number of positive mosquitoes for detection, and (iii) RNA amounts on FTA versus blood. RT-qPCR detected CHIKV RNA in 90% of FTA cards and 96% of exposed mosquitoes. RNA remained stable under varying conditions, with no significant difference compared to blood. BR-ArboTrap is an effective, affordable, and field-ready tool to enhance arbovirus surveillance in remote and low-resource areas.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.