Jieyun Wu, Dongmei Li, Rebijith K Balan, Sherly George, Lora Peacock, Chandan Pal
{"title":"环境DNA与大样本元条形码在蠓科生物安全监测中的比较评价","authors":"Jieyun Wu, Dongmei Li, Rebijith K Balan, Sherly George, Lora Peacock, Chandan Pal","doi":"10.3390/insects16060564","DOIUrl":null,"url":null,"abstract":"<p><p>Biting midges, <i>Culicoides</i> spp. (Diptera: Ceratopogonidae), are significant vectors capable of transmitting arboviruses, such as bluetongue virus, to livestock. New Zealand is free of <i>Culicoides</i>, and a national surveillance programme is in place for the early detection of an incursion. Traditionally, insect trap samples from the surveillance programme are analyzed using morphology-based diagnostics under microscopes, which is time-consuming and relies on specialized taxonomic expertise. Here, we assessed the effectiveness of DNA metabarcoding using insect bulk samples and environmental DNA (eDNA) from liquid samples collected in surveillance traps. Two Cytochrome oxidase I (COI) barcoding primer sets were employed to study biodiversity and detect exotic species. The results indicated that DNA metabarcoding with homogenized insect bulk samples had a higher overall detection accuracy rate (over 81% for both primer pairs) compared to ethanol fluid-derived eDNA samples from traps (68.42% and 55.26% for the primer sets LCO1490/HCO2198 and mlCOIintF/jgHCO2198, respectively) based on congruence with morphological identification. Detection failures were likely due to eDNA extraction issues or low target species abundance. Both approaches showed similar insect community composition and diversity in the surveillance trap samples, suggesting the potential of DNA metabarcoding for biosecurity surveillance and biodiversity assessments. Overall, DNA metabarcoding using bulk insect samples could enhance the efficiency of <i>Culicoides</i> surveillance, reducing workload and screening time.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193466/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Assessment of Environmental DNA and Bulk-Sample Metabarcoding in Biosecurity Surveillance for Detecting Biting Midges (Ceratopogonidae).\",\"authors\":\"Jieyun Wu, Dongmei Li, Rebijith K Balan, Sherly George, Lora Peacock, Chandan Pal\",\"doi\":\"10.3390/insects16060564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biting midges, <i>Culicoides</i> spp. (Diptera: Ceratopogonidae), are significant vectors capable of transmitting arboviruses, such as bluetongue virus, to livestock. New Zealand is free of <i>Culicoides</i>, and a national surveillance programme is in place for the early detection of an incursion. Traditionally, insect trap samples from the surveillance programme are analyzed using morphology-based diagnostics under microscopes, which is time-consuming and relies on specialized taxonomic expertise. Here, we assessed the effectiveness of DNA metabarcoding using insect bulk samples and environmental DNA (eDNA) from liquid samples collected in surveillance traps. Two Cytochrome oxidase I (COI) barcoding primer sets were employed to study biodiversity and detect exotic species. The results indicated that DNA metabarcoding with homogenized insect bulk samples had a higher overall detection accuracy rate (over 81% for both primer pairs) compared to ethanol fluid-derived eDNA samples from traps (68.42% and 55.26% for the primer sets LCO1490/HCO2198 and mlCOIintF/jgHCO2198, respectively) based on congruence with morphological identification. Detection failures were likely due to eDNA extraction issues or low target species abundance. Both approaches showed similar insect community composition and diversity in the surveillance trap samples, suggesting the potential of DNA metabarcoding for biosecurity surveillance and biodiversity assessments. Overall, DNA metabarcoding using bulk insect samples could enhance the efficiency of <i>Culicoides</i> surveillance, reducing workload and screening time.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects16060564\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16060564","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Comparative Assessment of Environmental DNA and Bulk-Sample Metabarcoding in Biosecurity Surveillance for Detecting Biting Midges (Ceratopogonidae).
Biting midges, Culicoides spp. (Diptera: Ceratopogonidae), are significant vectors capable of transmitting arboviruses, such as bluetongue virus, to livestock. New Zealand is free of Culicoides, and a national surveillance programme is in place for the early detection of an incursion. Traditionally, insect trap samples from the surveillance programme are analyzed using morphology-based diagnostics under microscopes, which is time-consuming and relies on specialized taxonomic expertise. Here, we assessed the effectiveness of DNA metabarcoding using insect bulk samples and environmental DNA (eDNA) from liquid samples collected in surveillance traps. Two Cytochrome oxidase I (COI) barcoding primer sets were employed to study biodiversity and detect exotic species. The results indicated that DNA metabarcoding with homogenized insect bulk samples had a higher overall detection accuracy rate (over 81% for both primer pairs) compared to ethanol fluid-derived eDNA samples from traps (68.42% and 55.26% for the primer sets LCO1490/HCO2198 and mlCOIintF/jgHCO2198, respectively) based on congruence with morphological identification. Detection failures were likely due to eDNA extraction issues or low target species abundance. Both approaches showed similar insect community composition and diversity in the surveillance trap samples, suggesting the potential of DNA metabarcoding for biosecurity surveillance and biodiversity assessments. Overall, DNA metabarcoding using bulk insect samples could enhance the efficiency of Culicoides surveillance, reducing workload and screening time.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.