Hassan Nahas, Billy Y S Yiu, Adrian J Y Chee, Takuro Ishii, Alfred C H Yu
{"title":"床边超声矢量多普勒成像系统与GPU处理和深度学习。","authors":"Hassan Nahas, Billy Y S Yiu, Adrian J Y Chee, Takuro Ishii, Alfred C H Yu","doi":"10.1109/TUFFC.2025.3582773","DOIUrl":null,"url":null,"abstract":"<p><p>Recent innovations in vector flow imaging promise to bring the modality closer to clinical application and allow for more comprehensive high-frame-rate vascular assessments. One such innovation is plane-wave multi-angle vector Doppler, where pulsed Doppler principles from multiple steering angles are used to realize vector flow imaging at frame rates upward of 1,000 frames per second (fps). Currently, vector Doppler is limited by the presence of aliasing artifacts that have prevented its reliable realization at the bedside. In this work, we present a new aliasing-resistant vector Doppler imaging system that can be deployed at the bedside using a programmable ultrasound core, graphics processing unit (GPU) processing, and deep learning principles. The framework supports two operational modes: 1) live imaging at 17 fps where vector flow imaging serves to guide image view navigation in blood vessels with complex dynamics; 2) on-demand replay mode where flow data acquired at high frame rates of over 1,000 fps is depicted as a slow-motion playback at 60 fps using an aliasing-resistant vector projectile visualization. Using our new system, aliasing-free vector flow cineloops were successfully obtained in a stenosis phantom experiment and in human bifurcation imaging scans. This system represents a major engineering advance towards the clinical adoption of vector flow imaging.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bedside Ultrasound Vector Doppler Imaging System with GPU Processing and Deep Learning.\",\"authors\":\"Hassan Nahas, Billy Y S Yiu, Adrian J Y Chee, Takuro Ishii, Alfred C H Yu\",\"doi\":\"10.1109/TUFFC.2025.3582773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent innovations in vector flow imaging promise to bring the modality closer to clinical application and allow for more comprehensive high-frame-rate vascular assessments. One such innovation is plane-wave multi-angle vector Doppler, where pulsed Doppler principles from multiple steering angles are used to realize vector flow imaging at frame rates upward of 1,000 frames per second (fps). Currently, vector Doppler is limited by the presence of aliasing artifacts that have prevented its reliable realization at the bedside. In this work, we present a new aliasing-resistant vector Doppler imaging system that can be deployed at the bedside using a programmable ultrasound core, graphics processing unit (GPU) processing, and deep learning principles. The framework supports two operational modes: 1) live imaging at 17 fps where vector flow imaging serves to guide image view navigation in blood vessels with complex dynamics; 2) on-demand replay mode where flow data acquired at high frame rates of over 1,000 fps is depicted as a slow-motion playback at 60 fps using an aliasing-resistant vector projectile visualization. Using our new system, aliasing-free vector flow cineloops were successfully obtained in a stenosis phantom experiment and in human bifurcation imaging scans. This system represents a major engineering advance towards the clinical adoption of vector flow imaging.</p>\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TUFFC.2025.3582773\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TUFFC.2025.3582773","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Bedside Ultrasound Vector Doppler Imaging System with GPU Processing and Deep Learning.
Recent innovations in vector flow imaging promise to bring the modality closer to clinical application and allow for more comprehensive high-frame-rate vascular assessments. One such innovation is plane-wave multi-angle vector Doppler, where pulsed Doppler principles from multiple steering angles are used to realize vector flow imaging at frame rates upward of 1,000 frames per second (fps). Currently, vector Doppler is limited by the presence of aliasing artifacts that have prevented its reliable realization at the bedside. In this work, we present a new aliasing-resistant vector Doppler imaging system that can be deployed at the bedside using a programmable ultrasound core, graphics processing unit (GPU) processing, and deep learning principles. The framework supports two operational modes: 1) live imaging at 17 fps where vector flow imaging serves to guide image view navigation in blood vessels with complex dynamics; 2) on-demand replay mode where flow data acquired at high frame rates of over 1,000 fps is depicted as a slow-motion playback at 60 fps using an aliasing-resistant vector projectile visualization. Using our new system, aliasing-free vector flow cineloops were successfully obtained in a stenosis phantom experiment and in human bifurcation imaging scans. This system represents a major engineering advance towards the clinical adoption of vector flow imaging.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.