加拿大COVID-19非药物干预措施对流感影响的回顾性研究

IF 3.4 Q2 INFECTIOUS DISEASES
Heather MacTavish, Kenzie MacIntyre, Paniz Zadeh, Matthew Betti
{"title":"加拿大COVID-19非药物干预措施对流感影响的回顾性研究","authors":"Heather MacTavish, Kenzie MacIntyre, Paniz Zadeh, Matthew Betti","doi":"10.3390/idr17030059","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: COVID-19 pandemic had a significant impact on endemic respiratory illnesses. Through behavioral changes in populations and government policy, mainly through non-pharmaceutical interventions (NPIs), Canada saw historic lows in the number of influenza A cases from 2020 through 2022. In this study, we use historical influenza A data for Canada and three provincial jurisdictions within Canada-Ontario, Quebec, and Alberta-to quantify the effects of these NPIs on influenza A. <b>Methods</b>: We aim to see which base parameters and derived parameters of an SIR model are most affected by NPIs. We fit a simple SIR model to historical influenza data to get average paramters for seasonal influenza. We then compare these parameters to those predicted by fitting influenza cases during the COVID-19 pandemic. <b>Results</b>: We find substantial differences in the effective population size and basic reproduction number during the COVID-19 pandemic. We also see the effects of fatigue and relaxation of NPIs when comparing the years 2020, 2021, and 2022. <b>Conclusions</b>: We find that the effective population size is the main driver of change to disease spread and discuss how these retrospective estimates can be used for future forecasting.</p>","PeriodicalId":13579,"journal":{"name":"Infectious Disease Reports","volume":"17 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192953/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Retrospective Study of the Effects of COVID-19 Non-Pharmaceutical Interventions on Influenza in Canada.\",\"authors\":\"Heather MacTavish, Kenzie MacIntyre, Paniz Zadeh, Matthew Betti\",\"doi\":\"10.3390/idr17030059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: COVID-19 pandemic had a significant impact on endemic respiratory illnesses. Through behavioral changes in populations and government policy, mainly through non-pharmaceutical interventions (NPIs), Canada saw historic lows in the number of influenza A cases from 2020 through 2022. In this study, we use historical influenza A data for Canada and three provincial jurisdictions within Canada-Ontario, Quebec, and Alberta-to quantify the effects of these NPIs on influenza A. <b>Methods</b>: We aim to see which base parameters and derived parameters of an SIR model are most affected by NPIs. We fit a simple SIR model to historical influenza data to get average paramters for seasonal influenza. We then compare these parameters to those predicted by fitting influenza cases during the COVID-19 pandemic. <b>Results</b>: We find substantial differences in the effective population size and basic reproduction number during the COVID-19 pandemic. We also see the effects of fatigue and relaxation of NPIs when comparing the years 2020, 2021, and 2022. <b>Conclusions</b>: We find that the effective population size is the main driver of change to disease spread and discuss how these retrospective estimates can be used for future forecasting.</p>\",\"PeriodicalId\":13579,\"journal\":{\"name\":\"Infectious Disease Reports\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Disease Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/idr17030059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/idr17030059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:COVID-19大流行对地方性呼吸系统疾病有重大影响。通过人口行为和政府政策的改变,主要是通过非药物干预措施,加拿大从2020年到2022年的甲型流感病例数量达到了历史最低水平。在这项研究中,我们使用了加拿大和加拿大三个省级管辖区(安大略省、魁北克省和阿尔伯塔省)的历史甲型流感数据来量化这些npi对甲型流感的影响。方法:我们的目标是看到SIR模型的哪些基本参数和衍生参数受npi的影响最大。我们将一个简单的SIR模型拟合到历史流感数据中,得到季节性流感的平均参数。然后,我们将这些参数与COVID-19大流行期间拟合流感病例预测的参数进行比较。结果:在COVID-19大流行期间,有效种群规模和基本繁殖数存在显著差异。通过对2020年、2021年和2022年的比较,我们也看到了npi的疲劳和放松的影响。结论:我们发现有效种群规模是疾病传播变化的主要驱动因素,并讨论了如何将这些回顾性估计用于未来预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Retrospective Study of the Effects of COVID-19 Non-Pharmaceutical Interventions on Influenza in Canada.

Background/Objectives: COVID-19 pandemic had a significant impact on endemic respiratory illnesses. Through behavioral changes in populations and government policy, mainly through non-pharmaceutical interventions (NPIs), Canada saw historic lows in the number of influenza A cases from 2020 through 2022. In this study, we use historical influenza A data for Canada and three provincial jurisdictions within Canada-Ontario, Quebec, and Alberta-to quantify the effects of these NPIs on influenza A. Methods: We aim to see which base parameters and derived parameters of an SIR model are most affected by NPIs. We fit a simple SIR model to historical influenza data to get average paramters for seasonal influenza. We then compare these parameters to those predicted by fitting influenza cases during the COVID-19 pandemic. Results: We find substantial differences in the effective population size and basic reproduction number during the COVID-19 pandemic. We also see the effects of fatigue and relaxation of NPIs when comparing the years 2020, 2021, and 2022. Conclusions: We find that the effective population size is the main driver of change to disease spread and discuss how these retrospective estimates can be used for future forecasting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infectious Disease Reports
Infectious Disease Reports INFECTIOUS DISEASES-
CiteScore
5.10
自引率
0.00%
发文量
82
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信