淀粉-甘油基水凝胶记忆电阻器在仿生听觉神经元中的应用。

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-06-01 DOI:10.3390/gels11060423
Jiachu Xie, Yuehang Ju, Zhenwei Zhang, Dianzhong Wen, Lu Wang
{"title":"淀粉-甘油基水凝胶记忆电阻器在仿生听觉神经元中的应用。","authors":"Jiachu Xie, Yuehang Ju, Zhenwei Zhang, Dianzhong Wen, Lu Wang","doi":"10.3390/gels11060423","DOIUrl":null,"url":null,"abstract":"<p><p>In the era of artificial intelligence, the demand for rapid and efficient data processing is growing, and traditional computing architectures are increasingly struggling to meet these needs. Against this backdrop, memristor devices, capable of mimicking the computational functions of brain neural networks, have emerged as key components in neuromorphic systems. Despite this, memristors still face many challenges in biomimetic functionality and circuit integration. In this context, a starch-glycerol-based hydrogel memristor was developed using starch as the dielectric material. The starch-glycerol-water mixture employed in this study has been widely recognized in literature as a physically cross-linked hydrogel system with a three-dimensional network, and both high water content and mechanical flexibility. This memristor demonstrates a high current switching ratio and stable threshold voltage, showing great potential in mimicking the activity of biological neurons. The device possesses the functionality of auditory neurons, not only achieving artificial spiking neuron discharge but also accomplishing the spatiotemporal summation of input information. In addition, we demonstrate the application capabilities of this artificial auditory neuron in gain modulation and in the synchronization detection of sound signals, further highlighting its potential in neuromorphic engineering applications. These results suggest that starch-based hydrogel memristors offer a promising platform for the construction of bio-inspired auditory neuron circuits and flexible neuromorphic systems.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192081/pdf/","citationCount":"0","resultStr":"{\"title\":\"Starch-Glycerol-Based Hydrogel Memristors for Bio-Inspired Auditory Neuron Applications.\",\"authors\":\"Jiachu Xie, Yuehang Ju, Zhenwei Zhang, Dianzhong Wen, Lu Wang\",\"doi\":\"10.3390/gels11060423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the era of artificial intelligence, the demand for rapid and efficient data processing is growing, and traditional computing architectures are increasingly struggling to meet these needs. Against this backdrop, memristor devices, capable of mimicking the computational functions of brain neural networks, have emerged as key components in neuromorphic systems. Despite this, memristors still face many challenges in biomimetic functionality and circuit integration. In this context, a starch-glycerol-based hydrogel memristor was developed using starch as the dielectric material. The starch-glycerol-water mixture employed in this study has been widely recognized in literature as a physically cross-linked hydrogel system with a three-dimensional network, and both high water content and mechanical flexibility. This memristor demonstrates a high current switching ratio and stable threshold voltage, showing great potential in mimicking the activity of biological neurons. The device possesses the functionality of auditory neurons, not only achieving artificial spiking neuron discharge but also accomplishing the spatiotemporal summation of input information. In addition, we demonstrate the application capabilities of this artificial auditory neuron in gain modulation and in the synchronization detection of sound signals, further highlighting its potential in neuromorphic engineering applications. These results suggest that starch-based hydrogel memristors offer a promising platform for the construction of bio-inspired auditory neuron circuits and flexible neuromorphic systems.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 6\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11060423\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060423","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在人工智能时代,对快速高效的数据处理的需求越来越大,传统的计算架构越来越难以满足这些需求。在此背景下,忆阻器装置,能够模仿大脑神经网络的计算功能,已经成为神经形态系统的关键组成部分。尽管如此,忆阻器在仿生功能和电路集成方面仍然面临许多挑战。在此背景下,以淀粉为介质材料,研制了淀粉-甘油基水凝胶忆阻器。本研究采用的淀粉-甘油-水混合物被文献广泛认可为具有三维网络的物理交联水凝胶体系,具有高含水量和机械柔韧性。该忆阻器具有高的电流开关比和稳定的阈值电压,在模拟生物神经元活动方面具有很大的潜力。该装置具有听觉神经元的功能,既能实现人工尖峰神经元放电,又能实现输入信息的时空叠加。此外,我们还展示了这种人工听觉神经元在增益调制和声音信号同步检测方面的应用能力,进一步强调了其在神经形态工程应用中的潜力。这些结果表明,淀粉基水凝胶记忆电阻器为构建仿生听觉神经元回路和柔性神经形态系统提供了一个有前景的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Starch-Glycerol-Based Hydrogel Memristors for Bio-Inspired Auditory Neuron Applications.

In the era of artificial intelligence, the demand for rapid and efficient data processing is growing, and traditional computing architectures are increasingly struggling to meet these needs. Against this backdrop, memristor devices, capable of mimicking the computational functions of brain neural networks, have emerged as key components in neuromorphic systems. Despite this, memristors still face many challenges in biomimetic functionality and circuit integration. In this context, a starch-glycerol-based hydrogel memristor was developed using starch as the dielectric material. The starch-glycerol-water mixture employed in this study has been widely recognized in literature as a physically cross-linked hydrogel system with a three-dimensional network, and both high water content and mechanical flexibility. This memristor demonstrates a high current switching ratio and stable threshold voltage, showing great potential in mimicking the activity of biological neurons. The device possesses the functionality of auditory neurons, not only achieving artificial spiking neuron discharge but also accomplishing the spatiotemporal summation of input information. In addition, we demonstrate the application capabilities of this artificial auditory neuron in gain modulation and in the synchronization detection of sound signals, further highlighting its potential in neuromorphic engineering applications. These results suggest that starch-based hydrogel memristors offer a promising platform for the construction of bio-inspired auditory neuron circuits and flexible neuromorphic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信