Yadong Zhao, Chengcheng Peng, Zheng Yang, Zhengjie Liu, Heng Yen Khong, Soottawat Benjakul, Bin Zhang, Ruizhi Yang
{"title":"通过磷酸化偶联Ca2+配位制备机械强度和阻燃的纤维素气凝胶。","authors":"Yadong Zhao, Chengcheng Peng, Zheng Yang, Zhengjie Liu, Heng Yen Khong, Soottawat Benjakul, Bin Zhang, Ruizhi Yang","doi":"10.3390/gels11060408","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose-based aerogel is an environmentally friendly multifunctional material that is renewable, biodegradable, and easily surface-modified. However, due to its flammability, cellulose serves as an ignition source in fire incidents, leading to the combustion of building materials and resulting in significant economic losses and safety risks. Consequently, it is essential to develop cellulose-based building materials with flame-retardant properties. Initially, a porous cellulose-based flame-retardant aerogel was successfully synthesized through freeze-drying, utilizing lignocellulose as the raw material. Subsequently, phosphorylation of cellulose was coupled with Ca<sup>2+</sup> cross-linking via self-assembly and surface deposition effects to enhance its flame-retardant properties. Finally, the synthesized materials were characterized using infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, mechanical compression testing, and scanning electron microscopy. The aerogel of the phosphorylated cellulose nanofibrils cross-linked via 1.5% CaCl<sub>2</sub> exhibited the most effective flame-retardant properties and the best mechanical characteristics, achieving a UL-94 test rating of V-0 and a maximum flame-retardant rate of 90.6%. Additionally, its compressive strength and elastic modulus were recorded at 0.39 and 0.98 MPa, respectively. The preparation process is environmentally friendly, yielding products that demonstrate significant flame-retardant effects and are non-toxic. This product is anticipated to replace polymer-based commercial aerogel materials, representing a sustainable solution to the issue of \"white pollution\".</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191589/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanically Strong and Flame-Retardant Cellulose-Based Aerogel Prepared via Phosphorylation-Coupled Ca<sup>2+</sup> Coordination.\",\"authors\":\"Yadong Zhao, Chengcheng Peng, Zheng Yang, Zhengjie Liu, Heng Yen Khong, Soottawat Benjakul, Bin Zhang, Ruizhi Yang\",\"doi\":\"10.3390/gels11060408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellulose-based aerogel is an environmentally friendly multifunctional material that is renewable, biodegradable, and easily surface-modified. However, due to its flammability, cellulose serves as an ignition source in fire incidents, leading to the combustion of building materials and resulting in significant economic losses and safety risks. Consequently, it is essential to develop cellulose-based building materials with flame-retardant properties. Initially, a porous cellulose-based flame-retardant aerogel was successfully synthesized through freeze-drying, utilizing lignocellulose as the raw material. Subsequently, phosphorylation of cellulose was coupled with Ca<sup>2+</sup> cross-linking via self-assembly and surface deposition effects to enhance its flame-retardant properties. Finally, the synthesized materials were characterized using infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, mechanical compression testing, and scanning electron microscopy. The aerogel of the phosphorylated cellulose nanofibrils cross-linked via 1.5% CaCl<sub>2</sub> exhibited the most effective flame-retardant properties and the best mechanical characteristics, achieving a UL-94 test rating of V-0 and a maximum flame-retardant rate of 90.6%. Additionally, its compressive strength and elastic modulus were recorded at 0.39 and 0.98 MPa, respectively. The preparation process is environmentally friendly, yielding products that demonstrate significant flame-retardant effects and are non-toxic. This product is anticipated to replace polymer-based commercial aerogel materials, representing a sustainable solution to the issue of \\\"white pollution\\\".</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 6\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191589/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11060408\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060408","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Mechanically Strong and Flame-Retardant Cellulose-Based Aerogel Prepared via Phosphorylation-Coupled Ca2+ Coordination.
Cellulose-based aerogel is an environmentally friendly multifunctional material that is renewable, biodegradable, and easily surface-modified. However, due to its flammability, cellulose serves as an ignition source in fire incidents, leading to the combustion of building materials and resulting in significant economic losses and safety risks. Consequently, it is essential to develop cellulose-based building materials with flame-retardant properties. Initially, a porous cellulose-based flame-retardant aerogel was successfully synthesized through freeze-drying, utilizing lignocellulose as the raw material. Subsequently, phosphorylation of cellulose was coupled with Ca2+ cross-linking via self-assembly and surface deposition effects to enhance its flame-retardant properties. Finally, the synthesized materials were characterized using infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, mechanical compression testing, and scanning electron microscopy. The aerogel of the phosphorylated cellulose nanofibrils cross-linked via 1.5% CaCl2 exhibited the most effective flame-retardant properties and the best mechanical characteristics, achieving a UL-94 test rating of V-0 and a maximum flame-retardant rate of 90.6%. Additionally, its compressive strength and elastic modulus were recorded at 0.39 and 0.98 MPa, respectively. The preparation process is environmentally friendly, yielding products that demonstrate significant flame-retardant effects and are non-toxic. This product is anticipated to replace polymer-based commercial aerogel materials, representing a sustainable solution to the issue of "white pollution".
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.