PAGAT凝胶剂量计灌注临床常用钆基造影剂敏感性的剂量学评价。

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-05-30 DOI:10.3390/gels11060416
Melani Fuentealba, Carolina Vallejos, Sergio Díez, Mauricio Santibáñez
{"title":"PAGAT凝胶剂量计灌注临床常用钆基造影剂敏感性的剂量学评价。","authors":"Melani Fuentealba, Carolina Vallejos, Sergio Díez, Mauricio Santibáñez","doi":"10.3390/gels11060416","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the impact of gadolinium-based contrast agents (Omniscan, Dotarem, and Gadovist) on the performance of PAGAT gel dosimeters using spectrophotometric analysis. Dosimeters were infused with gadolinium at concentrations ranging from 0 to 40 mg/mL and irradiated with a 6 MV photon beam over a dose range of 0-15 Gy. Regarding dosimeter behavior, Dotarem exhibited an enhancement in optical density prior to irradiation due to polymerization reactions between the dosimeter and the contrast agent starting at 10 mg/mL, which compromised optical readings above 20 mg/mL. Omniscan consistently showed 37.7% lower sensitivity than standard PAGAT across all concentrations and dose levels. Conversely, Gadovist enhanced sensitivity by up to 50% at 20 mg/mL, with additional gains at higher concentrations, although accompanied by saturation at lower dose levels. Radiological analysis showed that all tested concentrations maintained mass energy-absorption coefficient differences below 1% and water-equivalence in effective atomic number within 5% at 6 MV. These findings underscore the importance of selecting an appropriate contrast agent to enhance gel dosimeter sensitivity, particularly in low-dose regions where measurement uncertainty increases. Additionally, gadolinium-infused PAGAT gels show strong potential for assessing dose enhancement phenomena. Their sensitivity, threshold behavior, and radiological properties suggest they may be suitable for applications in dose enhancement dosimetry as well as conventional clinical settings.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192002/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dosimetric Evaluation of the Sensitivity of PAGAT Gel Dosimeters Infused with Clinically Used Gadolinium-Based Contrast Agents.\",\"authors\":\"Melani Fuentealba, Carolina Vallejos, Sergio Díez, Mauricio Santibáñez\",\"doi\":\"10.3390/gels11060416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the impact of gadolinium-based contrast agents (Omniscan, Dotarem, and Gadovist) on the performance of PAGAT gel dosimeters using spectrophotometric analysis. Dosimeters were infused with gadolinium at concentrations ranging from 0 to 40 mg/mL and irradiated with a 6 MV photon beam over a dose range of 0-15 Gy. Regarding dosimeter behavior, Dotarem exhibited an enhancement in optical density prior to irradiation due to polymerization reactions between the dosimeter and the contrast agent starting at 10 mg/mL, which compromised optical readings above 20 mg/mL. Omniscan consistently showed 37.7% lower sensitivity than standard PAGAT across all concentrations and dose levels. Conversely, Gadovist enhanced sensitivity by up to 50% at 20 mg/mL, with additional gains at higher concentrations, although accompanied by saturation at lower dose levels. Radiological analysis showed that all tested concentrations maintained mass energy-absorption coefficient differences below 1% and water-equivalence in effective atomic number within 5% at 6 MV. These findings underscore the importance of selecting an appropriate contrast agent to enhance gel dosimeter sensitivity, particularly in low-dose regions where measurement uncertainty increases. Additionally, gadolinium-infused PAGAT gels show strong potential for assessing dose enhancement phenomena. Their sensitivity, threshold behavior, and radiological properties suggest they may be suitable for applications in dose enhancement dosimetry as well as conventional clinical settings.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 6\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192002/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11060416\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060416","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用分光光度法分析了钆造影剂(Omniscan、Dotarem和Gadovist)对PAGAT凝胶剂量计性能的影响。剂量计注入浓度为0 ~ 40 mg/mL的钆,以6 MV的光子束照射,剂量范围为0 ~ 15 Gy。关于剂量计的行为,由于剂量计和造影剂之间的聚合反应,Dotarem在辐照前表现出光密度的增强,从10mg /mL开始,这损害了20mg /mL以上的光学读数。在所有浓度和剂量水平下,Omniscan的灵敏度始终比标准PAGAT低37.7%。相反,Gadovist在20mg /mL浓度下可将灵敏度提高50%,在较高浓度下有额外的增益,尽管在较低剂量水平下伴有饱和。放射学分析表明,在6 MV下,所有测试浓度的质量能吸收系数差值均保持在1%以下,有效原子序数水等效在5%以内。这些发现强调了选择合适的造影剂以提高凝胶剂量计灵敏度的重要性,特别是在测量不确定度增加的低剂量区域。此外,钆注入的PAGAT凝胶在评估剂量增强现象方面表现出很强的潜力。它们的灵敏度、阈值行为和放射学特性表明,它们可能适用于剂量增强剂量学以及常规临床环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dosimetric Evaluation of the Sensitivity of PAGAT Gel Dosimeters Infused with Clinically Used Gadolinium-Based Contrast Agents.

This study evaluates the impact of gadolinium-based contrast agents (Omniscan, Dotarem, and Gadovist) on the performance of PAGAT gel dosimeters using spectrophotometric analysis. Dosimeters were infused with gadolinium at concentrations ranging from 0 to 40 mg/mL and irradiated with a 6 MV photon beam over a dose range of 0-15 Gy. Regarding dosimeter behavior, Dotarem exhibited an enhancement in optical density prior to irradiation due to polymerization reactions between the dosimeter and the contrast agent starting at 10 mg/mL, which compromised optical readings above 20 mg/mL. Omniscan consistently showed 37.7% lower sensitivity than standard PAGAT across all concentrations and dose levels. Conversely, Gadovist enhanced sensitivity by up to 50% at 20 mg/mL, with additional gains at higher concentrations, although accompanied by saturation at lower dose levels. Radiological analysis showed that all tested concentrations maintained mass energy-absorption coefficient differences below 1% and water-equivalence in effective atomic number within 5% at 6 MV. These findings underscore the importance of selecting an appropriate contrast agent to enhance gel dosimeter sensitivity, particularly in low-dose regions where measurement uncertainty increases. Additionally, gadolinium-infused PAGAT gels show strong potential for assessing dose enhancement phenomena. Their sensitivity, threshold behavior, and radiological properties suggest they may be suitable for applications in dose enhancement dosimetry as well as conventional clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信