{"title":"有机金属催化剂烯烃聚合反应的原子模拟:(吡啶酰胺)Hf(IV)配合物微观结构动力学在催化活性中的重要作用。","authors":"Kentaro Matsumoto, Nana Misawa, Shuhei Kanesato, Masataka Nagaoka","doi":"10.3389/fchem.2025.1618025","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the microscopic catalytic mechanism of the olefin polymerization reaction is crucial for the rational design of next-generation catalysts. However, the dynamic nature of the active species, including the fluctuations of the ion pair structure and the orientation of substituents, presents significant challenges for theoretical approaches. In this paper, we present an overview of our recent computational studies on the role of the structural dynamics of the active species of olefin polymerization catalyst in determining reactivity, especially focusing on a novel olefin polymerization catalyst (pyridylamido) Hf(IV) complex. Utilizing the molecular dynamics method and our Red Moon method, a novel methodology we have developed for atomistic simulation of complex chemical reaction systems, we elucidate how the dynamic features, including anion coordination and steric interaction, govern the reactivity in key steps such as ligand modification and propagation reactions. In addition, we demonstrate how machine learning techniques can be applied to extract chemically meaningful descriptors from the structural ensemble obtained from atomistic simulation data of complex chemical reaction systems, thereby identifying the substituents that play an important role in propagation reactions. Our studies highlight the importance of incorporating molecular-level dynamic features of catalysts into mechanistic models.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1618025"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185512/pdf/","citationCount":"0","resultStr":"{\"title\":\"Atomistic simulation of olefin polymerization reaction by organometallic catalyst: significant role of microscopic structural dynamics of (pyridylamido) Hf(IV) complex in catalytic reactivity.\",\"authors\":\"Kentaro Matsumoto, Nana Misawa, Shuhei Kanesato, Masataka Nagaoka\",\"doi\":\"10.3389/fchem.2025.1618025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the microscopic catalytic mechanism of the olefin polymerization reaction is crucial for the rational design of next-generation catalysts. However, the dynamic nature of the active species, including the fluctuations of the ion pair structure and the orientation of substituents, presents significant challenges for theoretical approaches. In this paper, we present an overview of our recent computational studies on the role of the structural dynamics of the active species of olefin polymerization catalyst in determining reactivity, especially focusing on a novel olefin polymerization catalyst (pyridylamido) Hf(IV) complex. Utilizing the molecular dynamics method and our Red Moon method, a novel methodology we have developed for atomistic simulation of complex chemical reaction systems, we elucidate how the dynamic features, including anion coordination and steric interaction, govern the reactivity in key steps such as ligand modification and propagation reactions. In addition, we demonstrate how machine learning techniques can be applied to extract chemically meaningful descriptors from the structural ensemble obtained from atomistic simulation data of complex chemical reaction systems, thereby identifying the substituents that play an important role in propagation reactions. Our studies highlight the importance of incorporating molecular-level dynamic features of catalysts into mechanistic models.</p>\",\"PeriodicalId\":12421,\"journal\":{\"name\":\"Frontiers in Chemistry\",\"volume\":\"13 \",\"pages\":\"1618025\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3389/fchem.2025.1618025\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1618025","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomistic simulation of olefin polymerization reaction by organometallic catalyst: significant role of microscopic structural dynamics of (pyridylamido) Hf(IV) complex in catalytic reactivity.
Understanding the microscopic catalytic mechanism of the olefin polymerization reaction is crucial for the rational design of next-generation catalysts. However, the dynamic nature of the active species, including the fluctuations of the ion pair structure and the orientation of substituents, presents significant challenges for theoretical approaches. In this paper, we present an overview of our recent computational studies on the role of the structural dynamics of the active species of olefin polymerization catalyst in determining reactivity, especially focusing on a novel olefin polymerization catalyst (pyridylamido) Hf(IV) complex. Utilizing the molecular dynamics method and our Red Moon method, a novel methodology we have developed for atomistic simulation of complex chemical reaction systems, we elucidate how the dynamic features, including anion coordination and steric interaction, govern the reactivity in key steps such as ligand modification and propagation reactions. In addition, we demonstrate how machine learning techniques can be applied to extract chemically meaningful descriptors from the structural ensemble obtained from atomistic simulation data of complex chemical reaction systems, thereby identifying the substituents that play an important role in propagation reactions. Our studies highlight the importance of incorporating molecular-level dynamic features of catalysts into mechanistic models.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.