Nr4a1调节斑马鱼的炎症和心脏再生。

IF 3.6 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2025-10-15 Epub Date: 2025-07-11 DOI:10.1242/dev.204395
Dong Feng, Yanhan Dong, Yiran Song, Nicholas Yapundich, Yifang Xie, Brian Spurlock, Tingting Lyu, Landry Kuehn, Li Qian, Jiandong Liu
{"title":"Nr4a1调节斑马鱼的炎症和心脏再生。","authors":"Dong Feng, Yanhan Dong, Yiran Song, Nicholas Yapundich, Yifang Xie, Brian Spurlock, Tingting Lyu, Landry Kuehn, Li Qian, Jiandong Liu","doi":"10.1242/dev.204395","DOIUrl":null,"url":null,"abstract":"<p><p>Recent findings have highlighted the complex role of inflammation in zebrafish heart regeneration, demonstrating that although inflammation is essential for initiating transient fibrosis and tissue repair, chronic inflammation, and unresolved fibrosis, could impede full regenerative recovery. In this study, we identified the nuclear receptor Nr4a1 as a crucial regulator of this regenerative process in zebrafish. Loss of Nr4a1 function led to a prolonged and excessive inflammatory response, disrupted neutrophil migration, delayed fibrin clearance, and ultimately impaired heart regeneration. Transcriptome-wide RNA-seq analysis at different injury stages revealed molecular disruptions associated with dysregulated inflammation and fibrosis in nr4a1 mutants. Notably, partial inhibition of the pro-inflammatory cytokine Tnfα rescued heart regeneration in the nr4a1 mutants, highlighting the therapeutic potential of modulating inflammation. Our findings suggest that Nr4a1 plays a crucial role in orchestrating the immune response during heart regeneration and may serve as a valuable target for enhancing cardiac repair following injury.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276807/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nr4a1 modulates inflammation and heart regeneration in zebrafish.\",\"authors\":\"Dong Feng, Yanhan Dong, Yiran Song, Nicholas Yapundich, Yifang Xie, Brian Spurlock, Tingting Lyu, Landry Kuehn, Li Qian, Jiandong Liu\",\"doi\":\"10.1242/dev.204395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent findings have highlighted the complex role of inflammation in zebrafish heart regeneration, demonstrating that although inflammation is essential for initiating transient fibrosis and tissue repair, chronic inflammation, and unresolved fibrosis, could impede full regenerative recovery. In this study, we identified the nuclear receptor Nr4a1 as a crucial regulator of this regenerative process in zebrafish. Loss of Nr4a1 function led to a prolonged and excessive inflammatory response, disrupted neutrophil migration, delayed fibrin clearance, and ultimately impaired heart regeneration. Transcriptome-wide RNA-seq analysis at different injury stages revealed molecular disruptions associated with dysregulated inflammation and fibrosis in nr4a1 mutants. Notably, partial inhibition of the pro-inflammatory cytokine Tnfα rescued heart regeneration in the nr4a1 mutants, highlighting the therapeutic potential of modulating inflammation. Our findings suggest that Nr4a1 plays a crucial role in orchestrating the immune response during heart regeneration and may serve as a valuable target for enhancing cardiac repair following injury.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276807/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204395\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204395","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究结果强调了炎症在斑马鱼心脏再生中的复杂作用,表明尽管炎症对于启动短暂纤维化和组织修复至关重要,但慢性炎症和未解决的纤维化可能阻碍完全的再生恢复。在这项研究中,我们发现核受体Nr4a1是斑马鱼这种再生过程的关键调节因子。Nr4a1功能缺失导致炎症反应延长和过度,中性粒细胞迁移中断,纤维蛋白清除延迟,最终损害心脏再生。不同损伤阶段的转录组全RNA-seq分析揭示了Nr4a1突变体中与炎症和纤维化失调相关的分子破坏。值得注意的是,部分抑制促炎细胞因子Tnf-α拯救了nr4a1突变体的心脏再生,突出了调节炎症的治疗潜力。我们的研究结果表明,Nr4a1在心脏再生过程中协调免疫反应中起着至关重要的作用,可能是增强损伤后心脏修复的一个有价值的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nr4a1 modulates inflammation and heart regeneration in zebrafish.

Recent findings have highlighted the complex role of inflammation in zebrafish heart regeneration, demonstrating that although inflammation is essential for initiating transient fibrosis and tissue repair, chronic inflammation, and unresolved fibrosis, could impede full regenerative recovery. In this study, we identified the nuclear receptor Nr4a1 as a crucial regulator of this regenerative process in zebrafish. Loss of Nr4a1 function led to a prolonged and excessive inflammatory response, disrupted neutrophil migration, delayed fibrin clearance, and ultimately impaired heart regeneration. Transcriptome-wide RNA-seq analysis at different injury stages revealed molecular disruptions associated with dysregulated inflammation and fibrosis in nr4a1 mutants. Notably, partial inhibition of the pro-inflammatory cytokine Tnfα rescued heart regeneration in the nr4a1 mutants, highlighting the therapeutic potential of modulating inflammation. Our findings suggest that Nr4a1 plays a crucial role in orchestrating the immune response during heart regeneration and may serve as a valuable target for enhancing cardiac repair following injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信