Weizhou Qiao, Yue Liu, Qinglong Kong, Xiaofeng Tao
{"title":"单细胞和整体转录组学的综合分析揭示了肝母细胞瘤的坏死特征和免疫景观。","authors":"Weizhou Qiao, Yue Liu, Qinglong Kong, Xiaofeng Tao","doi":"10.1116/6.0004611","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatoblastoma (HB) is a rare and aggressive pediatric liver tumor with complex etiology. Although necroptosis has been implicated in various cancers, its role in HB remains unclear. This study aimed to investigate the involvement of necroptosis-related genes and immune landscape in HB using integrative bioinformatics and machine learning approaches. Gene expression data from two independent HB datasets were integrated and analyzed. Differentially expressed genes (DEGs) and necroptosis-related DEGs (NR-DEGs) were identified, followed by functional enrichment analysis. Machine learning algorithms were employed to identify hub NR-DEGs. The immune landscape and hub NR-DEGs were investigated using single-sample gene set enrichment analysis (ssGSEA). A total of 1330 upregulated and 1061 downregulated common DEGs were identified. Five upregulated and fourteen downregulated NR-DEGs were identified, which were mainly enriched in immune-related pathways. Four hub NR-DEGs (SLC25A6, HSP90AB1, USP21, and CAMK2B) were identified as potential diagnostic biomarkers for HB. Immune infiltration analysis revealed elevated proportions of CD56bright natural killer cells and gamma delta T cells in HB patients, which significantly correlated with hub NR-DEG expression. ssGSEA indicated that hub NR-DEGs regulate various cellular processes, including cell cycle progression, RNA metabolism, protein synthesis, and viral infection response in HB. This study reveals the involvement of necroptosis-related genes and altered immune infiltration in HB pathogenesis, providing novel insights and potential therapeutic targets.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative analysis of single-cell and bulk transcriptomics reveals necroptosis signatures and immune landscape in hepatoblastoma.\",\"authors\":\"Weizhou Qiao, Yue Liu, Qinglong Kong, Xiaofeng Tao\",\"doi\":\"10.1116/6.0004611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatoblastoma (HB) is a rare and aggressive pediatric liver tumor with complex etiology. Although necroptosis has been implicated in various cancers, its role in HB remains unclear. This study aimed to investigate the involvement of necroptosis-related genes and immune landscape in HB using integrative bioinformatics and machine learning approaches. Gene expression data from two independent HB datasets were integrated and analyzed. Differentially expressed genes (DEGs) and necroptosis-related DEGs (NR-DEGs) were identified, followed by functional enrichment analysis. Machine learning algorithms were employed to identify hub NR-DEGs. The immune landscape and hub NR-DEGs were investigated using single-sample gene set enrichment analysis (ssGSEA). A total of 1330 upregulated and 1061 downregulated common DEGs were identified. Five upregulated and fourteen downregulated NR-DEGs were identified, which were mainly enriched in immune-related pathways. Four hub NR-DEGs (SLC25A6, HSP90AB1, USP21, and CAMK2B) were identified as potential diagnostic biomarkers for HB. Immune infiltration analysis revealed elevated proportions of CD56bright natural killer cells and gamma delta T cells in HB patients, which significantly correlated with hub NR-DEG expression. ssGSEA indicated that hub NR-DEGs regulate various cellular processes, including cell cycle progression, RNA metabolism, protein synthesis, and viral infection response in HB. This study reveals the involvement of necroptosis-related genes and altered immune infiltration in HB pathogenesis, providing novel insights and potential therapeutic targets.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004611\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004611","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Integrative analysis of single-cell and bulk transcriptomics reveals necroptosis signatures and immune landscape in hepatoblastoma.
Hepatoblastoma (HB) is a rare and aggressive pediatric liver tumor with complex etiology. Although necroptosis has been implicated in various cancers, its role in HB remains unclear. This study aimed to investigate the involvement of necroptosis-related genes and immune landscape in HB using integrative bioinformatics and machine learning approaches. Gene expression data from two independent HB datasets were integrated and analyzed. Differentially expressed genes (DEGs) and necroptosis-related DEGs (NR-DEGs) were identified, followed by functional enrichment analysis. Machine learning algorithms were employed to identify hub NR-DEGs. The immune landscape and hub NR-DEGs were investigated using single-sample gene set enrichment analysis (ssGSEA). A total of 1330 upregulated and 1061 downregulated common DEGs were identified. Five upregulated and fourteen downregulated NR-DEGs were identified, which were mainly enriched in immune-related pathways. Four hub NR-DEGs (SLC25A6, HSP90AB1, USP21, and CAMK2B) were identified as potential diagnostic biomarkers for HB. Immune infiltration analysis revealed elevated proportions of CD56bright natural killer cells and gamma delta T cells in HB patients, which significantly correlated with hub NR-DEG expression. ssGSEA indicated that hub NR-DEGs regulate various cellular processes, including cell cycle progression, RNA metabolism, protein synthesis, and viral infection response in HB. This study reveals the involvement of necroptosis-related genes and altered immune infiltration in HB pathogenesis, providing novel insights and potential therapeutic targets.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.