单细胞和整体转录组学的综合分析揭示了肝母细胞瘤的坏死特征和免疫景观。

IF 1.6 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2025-05-01 DOI:10.1116/6.0004611
Weizhou Qiao, Yue Liu, Qinglong Kong, Xiaofeng Tao
{"title":"单细胞和整体转录组学的综合分析揭示了肝母细胞瘤的坏死特征和免疫景观。","authors":"Weizhou Qiao, Yue Liu, Qinglong Kong, Xiaofeng Tao","doi":"10.1116/6.0004611","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatoblastoma (HB) is a rare and aggressive pediatric liver tumor with complex etiology. Although necroptosis has been implicated in various cancers, its role in HB remains unclear. This study aimed to investigate the involvement of necroptosis-related genes and immune landscape in HB using integrative bioinformatics and machine learning approaches. Gene expression data from two independent HB datasets were integrated and analyzed. Differentially expressed genes (DEGs) and necroptosis-related DEGs (NR-DEGs) were identified, followed by functional enrichment analysis. Machine learning algorithms were employed to identify hub NR-DEGs. The immune landscape and hub NR-DEGs were investigated using single-sample gene set enrichment analysis (ssGSEA). A total of 1330 upregulated and 1061 downregulated common DEGs were identified. Five upregulated and fourteen downregulated NR-DEGs were identified, which were mainly enriched in immune-related pathways. Four hub NR-DEGs (SLC25A6, HSP90AB1, USP21, and CAMK2B) were identified as potential diagnostic biomarkers for HB. Immune infiltration analysis revealed elevated proportions of CD56bright natural killer cells and gamma delta T cells in HB patients, which significantly correlated with hub NR-DEG expression. ssGSEA indicated that hub NR-DEGs regulate various cellular processes, including cell cycle progression, RNA metabolism, protein synthesis, and viral infection response in HB. This study reveals the involvement of necroptosis-related genes and altered immune infiltration in HB pathogenesis, providing novel insights and potential therapeutic targets.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative analysis of single-cell and bulk transcriptomics reveals necroptosis signatures and immune landscape in hepatoblastoma.\",\"authors\":\"Weizhou Qiao, Yue Liu, Qinglong Kong, Xiaofeng Tao\",\"doi\":\"10.1116/6.0004611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatoblastoma (HB) is a rare and aggressive pediatric liver tumor with complex etiology. Although necroptosis has been implicated in various cancers, its role in HB remains unclear. This study aimed to investigate the involvement of necroptosis-related genes and immune landscape in HB using integrative bioinformatics and machine learning approaches. Gene expression data from two independent HB datasets were integrated and analyzed. Differentially expressed genes (DEGs) and necroptosis-related DEGs (NR-DEGs) were identified, followed by functional enrichment analysis. Machine learning algorithms were employed to identify hub NR-DEGs. The immune landscape and hub NR-DEGs were investigated using single-sample gene set enrichment analysis (ssGSEA). A total of 1330 upregulated and 1061 downregulated common DEGs were identified. Five upregulated and fourteen downregulated NR-DEGs were identified, which were mainly enriched in immune-related pathways. Four hub NR-DEGs (SLC25A6, HSP90AB1, USP21, and CAMK2B) were identified as potential diagnostic biomarkers for HB. Immune infiltration analysis revealed elevated proportions of CD56bright natural killer cells and gamma delta T cells in HB patients, which significantly correlated with hub NR-DEG expression. ssGSEA indicated that hub NR-DEGs regulate various cellular processes, including cell cycle progression, RNA metabolism, protein synthesis, and viral infection response in HB. This study reveals the involvement of necroptosis-related genes and altered immune infiltration in HB pathogenesis, providing novel insights and potential therapeutic targets.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004611\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004611","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

肝母细胞瘤(HB)是一种罕见的侵袭性儿童肝脏肿瘤,病因复杂。虽然坏死性上睑下垂与多种癌症有关,但其在HB中的作用尚不清楚。本研究旨在利用综合生物信息学和机器学习方法研究坏死相关基因和免疫景观在HB中的作用。来自两个独立HB数据集的基因表达数据进行整合和分析。鉴定差异表达基因(DEGs)和坏死相关DEGs (NR-DEGs),然后进行功能富集分析。采用机器学习算法识别轮毂nr - deg。采用单样本基因集富集分析(ssGSEA)研究免疫景观和枢纽NR-DEGs。共有1330个基因表达上调,1061个基因表达下调。共鉴定出5个上调的nr - deg和14个下调的nr - deg,主要富集于免疫相关通路。四个枢纽NR-DEGs (SLC25A6, HSP90AB1, USP21和CAMK2B)被确定为HB的潜在诊断生物标志物。免疫浸润分析显示HB患者CD56bright自然杀伤细胞和γ δ T细胞比例升高,与hub NR-DEG表达显著相关。ssGSEA表明hub NR-DEGs调节HB的各种细胞过程,包括细胞周期进程、RNA代谢、蛋白质合成和病毒感染反应。这项研究揭示了坏死相关基因和免疫浸润改变在HB发病机制中的作用,提供了新的见解和潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrative analysis of single-cell and bulk transcriptomics reveals necroptosis signatures and immune landscape in hepatoblastoma.

Hepatoblastoma (HB) is a rare and aggressive pediatric liver tumor with complex etiology. Although necroptosis has been implicated in various cancers, its role in HB remains unclear. This study aimed to investigate the involvement of necroptosis-related genes and immune landscape in HB using integrative bioinformatics and machine learning approaches. Gene expression data from two independent HB datasets were integrated and analyzed. Differentially expressed genes (DEGs) and necroptosis-related DEGs (NR-DEGs) were identified, followed by functional enrichment analysis. Machine learning algorithms were employed to identify hub NR-DEGs. The immune landscape and hub NR-DEGs were investigated using single-sample gene set enrichment analysis (ssGSEA). A total of 1330 upregulated and 1061 downregulated common DEGs were identified. Five upregulated and fourteen downregulated NR-DEGs were identified, which were mainly enriched in immune-related pathways. Four hub NR-DEGs (SLC25A6, HSP90AB1, USP21, and CAMK2B) were identified as potential diagnostic biomarkers for HB. Immune infiltration analysis revealed elevated proportions of CD56bright natural killer cells and gamma delta T cells in HB patients, which significantly correlated with hub NR-DEG expression. ssGSEA indicated that hub NR-DEGs regulate various cellular processes, including cell cycle progression, RNA metabolism, protein synthesis, and viral infection response in HB. This study reveals the involvement of necroptosis-related genes and altered immune infiltration in HB pathogenesis, providing novel insights and potential therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信