基于CNN的多特征面部肤色分类算法。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Xiyuan Cao, Delong Zhang, Chunyang Jin, Zhidong Zhang, Chenyang Xue
{"title":"基于CNN的多特征面部肤色分类算法。","authors":"Xiyuan Cao, Delong Zhang, Chunyang Jin, Zhidong Zhang, Chenyang Xue","doi":"10.3390/biomimetics10060402","DOIUrl":null,"url":null,"abstract":"<p><p>Variations in facial complexion serve as a telltale sign of underlying health conditions. Precisely categorizing facial complexions poses a significant challenge due to the subtle distinctions in facial features. Three multi-feature facial complexion classification algorithms leveraging convolutional neural networks (CNNs) are proposed. They fuse, splice, or independently train the features extracted from distinct facial regions of interest (ROI), respectively. Innovative frameworks of the three algorithms can more effectively exploit facial features, improving the utilization rate of feature information and classification performance. We trained and validated the three algorithms on the dataset consisting of 721 facial images that we had collected and preprocessed. The comprehensive evaluation reveals that multi-feature fusion and splicing classification algorithms achieve accuracies of 95.98% and 93.76%, respectively. The optimal approach combining multi-feature CNN with machine learning algorithms attains a remarkable accuracy of 97.78%. Additionally, these experiments proved that the multidomain combination was crucial, and the arrangement of ROI features, including the nose, forehead, philtrum, and right and left cheek, was the optimal choice for classification. Furthermore, we employed the EfficientNet model for training on the face image as a whole, which achieves a classification accuracy of 89.37%. The difference in accuracy underscores the superiority and efficacy of multi-feature classification algorithms. The employment of multi-feature fusion algorithms in facial complexion classification holds substantial advantages, ushering in fresh research directions in the field of facial complexion classification and deep learning.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190456/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Feature Facial Complexion Classification Algorithms Based on CNN.\",\"authors\":\"Xiyuan Cao, Delong Zhang, Chunyang Jin, Zhidong Zhang, Chenyang Xue\",\"doi\":\"10.3390/biomimetics10060402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variations in facial complexion serve as a telltale sign of underlying health conditions. Precisely categorizing facial complexions poses a significant challenge due to the subtle distinctions in facial features. Three multi-feature facial complexion classification algorithms leveraging convolutional neural networks (CNNs) are proposed. They fuse, splice, or independently train the features extracted from distinct facial regions of interest (ROI), respectively. Innovative frameworks of the three algorithms can more effectively exploit facial features, improving the utilization rate of feature information and classification performance. We trained and validated the three algorithms on the dataset consisting of 721 facial images that we had collected and preprocessed. The comprehensive evaluation reveals that multi-feature fusion and splicing classification algorithms achieve accuracies of 95.98% and 93.76%, respectively. The optimal approach combining multi-feature CNN with machine learning algorithms attains a remarkable accuracy of 97.78%. Additionally, these experiments proved that the multidomain combination was crucial, and the arrangement of ROI features, including the nose, forehead, philtrum, and right and left cheek, was the optimal choice for classification. Furthermore, we employed the EfficientNet model for training on the face image as a whole, which achieves a classification accuracy of 89.37%. The difference in accuracy underscores the superiority and efficacy of multi-feature classification algorithms. The employment of multi-feature fusion algorithms in facial complexion classification holds substantial advantages, ushering in fresh research directions in the field of facial complexion classification and deep learning.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190456/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10060402\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060402","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

面部肤色的变化是潜在健康状况的标志。由于面部特征的细微差别,对面部肤色进行精确分类是一项重大挑战。提出了利用卷积神经网络(cnn)的三种多特征面部肤色分类算法。它们分别融合、拼接或独立训练从不同的感兴趣面部区域(ROI)中提取的特征。三种算法的创新框架可以更有效地挖掘人脸特征,提高特征信息的利用率和分类性能。我们在收集和预处理的721张面部图像组成的数据集上训练和验证了这三种算法。综合评价表明,多特征融合和拼接分类算法的准确率分别达到95.98%和93.76%。将多特征CNN与机器学习算法相结合的最优方法获得了97.78%的显著准确率。此外,这些实验证明了多域组合是至关重要的,ROI特征的排列,包括鼻子,前额,中,左右脸颊,是分类的最佳选择。此外,我们采用effentnet模型对整个人脸图像进行训练,达到了89.37%的分类准确率。准确率的差异凸显了多特征分类算法的优越性和有效性。多特征融合算法在面部肤色分类中具有显著的优势,为面部肤色分类和深度学习领域开辟了新的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Feature Facial Complexion Classification Algorithms Based on CNN.

Variations in facial complexion serve as a telltale sign of underlying health conditions. Precisely categorizing facial complexions poses a significant challenge due to the subtle distinctions in facial features. Three multi-feature facial complexion classification algorithms leveraging convolutional neural networks (CNNs) are proposed. They fuse, splice, or independently train the features extracted from distinct facial regions of interest (ROI), respectively. Innovative frameworks of the three algorithms can more effectively exploit facial features, improving the utilization rate of feature information and classification performance. We trained and validated the three algorithms on the dataset consisting of 721 facial images that we had collected and preprocessed. The comprehensive evaluation reveals that multi-feature fusion and splicing classification algorithms achieve accuracies of 95.98% and 93.76%, respectively. The optimal approach combining multi-feature CNN with machine learning algorithms attains a remarkable accuracy of 97.78%. Additionally, these experiments proved that the multidomain combination was crucial, and the arrangement of ROI features, including the nose, forehead, philtrum, and right and left cheek, was the optimal choice for classification. Furthermore, we employed the EfficientNet model for training on the face image as a whole, which achieves a classification accuracy of 89.37%. The difference in accuracy underscores the superiority and efficacy of multi-feature classification algorithms. The employment of multi-feature fusion algorithms in facial complexion classification holds substantial advantages, ushering in fresh research directions in the field of facial complexion classification and deep learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信