Qiyun Zhong, Qingsong He, Diyi Liu, Xinyu Lu, Siyuan Liu, Yuze Ye, Yefu Wang
{"title":"基于mwcnt增强聚氯乙烯凝胶的抓手接触感知压电传感器。","authors":"Qiyun Zhong, Qingsong He, Diyi Liu, Xinyu Lu, Siyuan Liu, Yuze Ye, Yefu Wang","doi":"10.3390/biomimetics10060363","DOIUrl":null,"url":null,"abstract":"<p><p>In contrast to traditional hydrogels, which are susceptible to water evaporation and structural degradation, non-hydrogel materials are engineered for superior stability and consistent performance. Here, we report an innovative piezoelectric polyvinyl chloride/multi-walled carbon nanotube polymer gel (PVC/MWCNT polymer gel, PMPG) with exceptional linearity (as low as 1.31%), high sensitivity (50-310.17 mV), rapid response (172-189 ms), and thermal stability. Under strain induction, ordered rearrangement of dipoles in PMPG and the enhancement of MWCNTs generate a potential difference. Increasing MWCNT content enhances output voltage, sensitivity, conductivity, maximum stress, Young's modulus, and toughness, while reducing nonlinear error. Higher dibutyl adipate (DBA) content increases output voltage and slightly improves sensitivity but decreases mechanical strength. The optimal PMPG (PVC:DBA = 1:5, 1 wt% MWCNTs) exhibited outstanding performance. It exhibits a nonlinear error as low as 1.31%, a conductivity of 25.4 μS/cm, an 80% compressive strain tolerance (273 kPa stress), and dimensional stability for 90 days in air. By integrating PMPG with machine learning algorithms, soft robotic grippers gain advanced contact perception capabilities, enabling applications in medicine, rescue, exploration, and other fields requiring fine manipulation and adaptability. This work highlights PMPG's potential as a stable, high-performance material for soft robotics and beyond.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190710/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Piezoelectric Sensor Based on MWCNT-Enhanced Polyvinyl Chloride Gel for Contact Perception of Grippers.\",\"authors\":\"Qiyun Zhong, Qingsong He, Diyi Liu, Xinyu Lu, Siyuan Liu, Yuze Ye, Yefu Wang\",\"doi\":\"10.3390/biomimetics10060363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In contrast to traditional hydrogels, which are susceptible to water evaporation and structural degradation, non-hydrogel materials are engineered for superior stability and consistent performance. Here, we report an innovative piezoelectric polyvinyl chloride/multi-walled carbon nanotube polymer gel (PVC/MWCNT polymer gel, PMPG) with exceptional linearity (as low as 1.31%), high sensitivity (50-310.17 mV), rapid response (172-189 ms), and thermal stability. Under strain induction, ordered rearrangement of dipoles in PMPG and the enhancement of MWCNTs generate a potential difference. Increasing MWCNT content enhances output voltage, sensitivity, conductivity, maximum stress, Young's modulus, and toughness, while reducing nonlinear error. Higher dibutyl adipate (DBA) content increases output voltage and slightly improves sensitivity but decreases mechanical strength. The optimal PMPG (PVC:DBA = 1:5, 1 wt% MWCNTs) exhibited outstanding performance. It exhibits a nonlinear error as low as 1.31%, a conductivity of 25.4 μS/cm, an 80% compressive strain tolerance (273 kPa stress), and dimensional stability for 90 days in air. By integrating PMPG with machine learning algorithms, soft robotic grippers gain advanced contact perception capabilities, enabling applications in medicine, rescue, exploration, and other fields requiring fine manipulation and adaptability. This work highlights PMPG's potential as a stable, high-performance material for soft robotics and beyond.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10060363\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060363","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Piezoelectric Sensor Based on MWCNT-Enhanced Polyvinyl Chloride Gel for Contact Perception of Grippers.
In contrast to traditional hydrogels, which are susceptible to water evaporation and structural degradation, non-hydrogel materials are engineered for superior stability and consistent performance. Here, we report an innovative piezoelectric polyvinyl chloride/multi-walled carbon nanotube polymer gel (PVC/MWCNT polymer gel, PMPG) with exceptional linearity (as low as 1.31%), high sensitivity (50-310.17 mV), rapid response (172-189 ms), and thermal stability. Under strain induction, ordered rearrangement of dipoles in PMPG and the enhancement of MWCNTs generate a potential difference. Increasing MWCNT content enhances output voltage, sensitivity, conductivity, maximum stress, Young's modulus, and toughness, while reducing nonlinear error. Higher dibutyl adipate (DBA) content increases output voltage and slightly improves sensitivity but decreases mechanical strength. The optimal PMPG (PVC:DBA = 1:5, 1 wt% MWCNTs) exhibited outstanding performance. It exhibits a nonlinear error as low as 1.31%, a conductivity of 25.4 μS/cm, an 80% compressive strain tolerance (273 kPa stress), and dimensional stability for 90 days in air. By integrating PMPG with machine learning algorithms, soft robotic grippers gain advanced contact perception capabilities, enabling applications in medicine, rescue, exploration, and other fields requiring fine manipulation and adaptability. This work highlights PMPG's potential as a stable, high-performance material for soft robotics and beyond.