扑翼飞行器轻量化仿生sma抓握机构研究。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Ahmad Hammad, Mehmet Süer, Sophie F Armanini
{"title":"扑翼飞行器轻量化仿生sma抓握机构研究。","authors":"Ahmad Hammad, Mehmet Süer, Sophie F Armanini","doi":"10.3390/biomimetics10060364","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel, bioinspired perching mechanism designed to enhance the landing and takeoff capabilities of flapping wing micro aerial vehicles (FWMAVs). Drawing inspiration from the human hand, the lightweight gripper integrates a compliant claw structure actuated by shape memory alloys (SMAs) that mimic muscle movement. These SMA springs act as compact, lightweight substitutes for traditional actuators like motors or solenoids. The mechanism operates via short electrical impulses that trigger both opening and closing motions. A detailed design process was undertaken to optimize phalange lengths for cylindrical grasping and to select appropriate SMAs for reliable performance. Weighing only 50 g, the gripper leverages the high power-to-weight ratio and flexibility of SMAs, with the springs directly embedded within the phalanges to reduce size and mass while preserving high-force output. Experimental results demonstrate fast actuation and a grasping force of approximately 16 N, enabling the gripper to hold objects of varying shapes and sizes and perform perching, grasping, and carrying tasks. Compared to existing solutions, this mechanism offers a simpler, highly integrated structure with enhanced miniaturization and adaptability, making it especially suitable for low-payload MAV platforms like FWMAVs.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191329/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Bioinspired SMA-Based Grasping Mechanism for Flapping Wing MAVs.\",\"authors\":\"Ahmad Hammad, Mehmet Süer, Sophie F Armanini\",\"doi\":\"10.3390/biomimetics10060364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a novel, bioinspired perching mechanism designed to enhance the landing and takeoff capabilities of flapping wing micro aerial vehicles (FWMAVs). Drawing inspiration from the human hand, the lightweight gripper integrates a compliant claw structure actuated by shape memory alloys (SMAs) that mimic muscle movement. These SMA springs act as compact, lightweight substitutes for traditional actuators like motors or solenoids. The mechanism operates via short electrical impulses that trigger both opening and closing motions. A detailed design process was undertaken to optimize phalange lengths for cylindrical grasping and to select appropriate SMAs for reliable performance. Weighing only 50 g, the gripper leverages the high power-to-weight ratio and flexibility of SMAs, with the springs directly embedded within the phalanges to reduce size and mass while preserving high-force output. Experimental results demonstrate fast actuation and a grasping force of approximately 16 N, enabling the gripper to hold objects of varying shapes and sizes and perform perching, grasping, and carrying tasks. Compared to existing solutions, this mechanism offers a simpler, highly integrated structure with enhanced miniaturization and adaptability, making it especially suitable for low-payload MAV platforms like FWMAVs.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191329/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10060364\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060364","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新型的生物栖地机制,旨在提高扑翼微型飞行器(FWMAVs)的起降能力。从人手中汲取灵感,轻量级的抓手集成了一个由形状记忆合金(sma)驱动的柔顺爪结构,模仿肌肉运动。这些SMA弹簧作为紧凑,轻量级的替代品,传统的执行器,如电机或螺线管。该机构通过触发打开和关闭动作的短电脉冲操作。进行了详细的设计过程,以优化圆柱形抓握的指骨长度,并选择合适的sma以获得可靠的性能。该夹具仅重50克,利用sma的高功率重量比和灵活性,弹簧直接嵌入到指骨中,以减小尺寸和质量,同时保持高力输出。实验结果表明,该夹具的驱动速度快,抓取力约为16牛,能够抓取不同形状和大小的物体,并执行悬停、抓取和搬运任务。与现有的解决方案相比,该机制提供了一个更简单、高度集成的结构,具有增强的小型化和适应性,使其特别适用于低载荷的MAV平台,如fwmav。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lightweight Bioinspired SMA-Based Grasping Mechanism for Flapping Wing MAVs.

This study presents a novel, bioinspired perching mechanism designed to enhance the landing and takeoff capabilities of flapping wing micro aerial vehicles (FWMAVs). Drawing inspiration from the human hand, the lightweight gripper integrates a compliant claw structure actuated by shape memory alloys (SMAs) that mimic muscle movement. These SMA springs act as compact, lightweight substitutes for traditional actuators like motors or solenoids. The mechanism operates via short electrical impulses that trigger both opening and closing motions. A detailed design process was undertaken to optimize phalange lengths for cylindrical grasping and to select appropriate SMAs for reliable performance. Weighing only 50 g, the gripper leverages the high power-to-weight ratio and flexibility of SMAs, with the springs directly embedded within the phalanges to reduce size and mass while preserving high-force output. Experimental results demonstrate fast actuation and a grasping force of approximately 16 N, enabling the gripper to hold objects of varying shapes and sizes and perform perching, grasping, and carrying tasks. Compared to existing solutions, this mechanism offers a simpler, highly integrated structure with enhanced miniaturization and adaptability, making it especially suitable for low-payload MAV platforms like FWMAVs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信