Mouhui Dai, Ruien Wu, Mingxuan Ye, Kai Gao, Bin Chen, Xinwang Tao, Zhijie Fan
{"title":"一种新型自主驱动仿生扑翼机的结构设计与优化。","authors":"Mouhui Dai, Ruien Wu, Mingxuan Ye, Kai Gao, Bin Chen, Xinwang Tao, Zhijie Fan","doi":"10.3390/biomimetics10060401","DOIUrl":null,"url":null,"abstract":"<p><p>To address the limitations of traditional single-motor bionic ornithopters in terms of environmental adaptability and lift capacity, this study proposes a dual-motor independently driven system utilizing a cross-shaft single-gear crank mechanism to achieve adjustable flap speed and wing frequency, thereby enabling asymmetric flapping for enhanced environmental adaptability. The design integrates a two-stage reduction gear group to optimize torque transmission and an S1223 high-lift airfoil to improve aerodynamic efficiency. Multiphysics simulations combining computational fluid dynamics (CFD) and finite element analysis (FEA) demonstrate that, under flapping frequencies of 1-3.45 Hz and wind speeds of 1.2-3 m/s, the optimized model achieves 50% and 60% improvements in lift and thrust coefficients, respectively, compared to the baseline. Concurrently, peak stress in critical components (e.g., cam disks and wing rods) is reduced by 37% to 41 MPa, with significantly improved stress uniformity. These results validate the dual-motor system's capability to dynamically adapt to turbulent airflow through the precise control of wing kinematics, offering innovative solutions for applications such as aerial inspection and precision agriculture.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191341/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Structural Design and Optimization of a Novel Independently Driven Bionic Ornithopter.\",\"authors\":\"Mouhui Dai, Ruien Wu, Mingxuan Ye, Kai Gao, Bin Chen, Xinwang Tao, Zhijie Fan\",\"doi\":\"10.3390/biomimetics10060401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the limitations of traditional single-motor bionic ornithopters in terms of environmental adaptability and lift capacity, this study proposes a dual-motor independently driven system utilizing a cross-shaft single-gear crank mechanism to achieve adjustable flap speed and wing frequency, thereby enabling asymmetric flapping for enhanced environmental adaptability. The design integrates a two-stage reduction gear group to optimize torque transmission and an S1223 high-lift airfoil to improve aerodynamic efficiency. Multiphysics simulations combining computational fluid dynamics (CFD) and finite element analysis (FEA) demonstrate that, under flapping frequencies of 1-3.45 Hz and wind speeds of 1.2-3 m/s, the optimized model achieves 50% and 60% improvements in lift and thrust coefficients, respectively, compared to the baseline. Concurrently, peak stress in critical components (e.g., cam disks and wing rods) is reduced by 37% to 41 MPa, with significantly improved stress uniformity. These results validate the dual-motor system's capability to dynamically adapt to turbulent airflow through the precise control of wing kinematics, offering innovative solutions for applications such as aerial inspection and precision agriculture.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10060401\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060401","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
The Structural Design and Optimization of a Novel Independently Driven Bionic Ornithopter.
To address the limitations of traditional single-motor bionic ornithopters in terms of environmental adaptability and lift capacity, this study proposes a dual-motor independently driven system utilizing a cross-shaft single-gear crank mechanism to achieve adjustable flap speed and wing frequency, thereby enabling asymmetric flapping for enhanced environmental adaptability. The design integrates a two-stage reduction gear group to optimize torque transmission and an S1223 high-lift airfoil to improve aerodynamic efficiency. Multiphysics simulations combining computational fluid dynamics (CFD) and finite element analysis (FEA) demonstrate that, under flapping frequencies of 1-3.45 Hz and wind speeds of 1.2-3 m/s, the optimized model achieves 50% and 60% improvements in lift and thrust coefficients, respectively, compared to the baseline. Concurrently, peak stress in critical components (e.g., cam disks and wing rods) is reduced by 37% to 41 MPa, with significantly improved stress uniformity. These results validate the dual-motor system's capability to dynamically adapt to turbulent airflow through the precise control of wing kinematics, offering innovative solutions for applications such as aerial inspection and precision agriculture.