Mete Özbaltan, Nihan Özbaltan, Hazal Su Bıçakcı Yeşilkaya, Murat Demir, Cihat Şeker, Merve Yıldırım
{"title":"基于符号控制的多仿人机器人任务调度。","authors":"Mete Özbaltan, Nihan Özbaltan, Hazal Su Bıçakcı Yeşilkaya, Murat Demir, Cihat Şeker, Merve Yıldırım","doi":"10.3390/biomimetics10060346","DOIUrl":null,"url":null,"abstract":"<p><p>Task scheduling for multiple humanoid robot manipulators in industrial and collaborative settings remains a significant challenge due to the complexity of coordination, resource sharing, and real-time decision-making. In this study, we propose a framework for modeling task scheduling for multiple humanoid robot manipulators by using the symbolic discrete controller synthesis technique. We encode the task scheduling problem as discrete events using parallel synchronous dataflow equations and apply our synthesis algorithms to manage the task scheduling of multiple humanoid robots via the resulting controller. The control objectives encompass the fundamental behaviors of the system, strict rules, and mutual exclusions over shared resources, categorized as the safety property, whereas the optimization objectives are directed toward maximizing the throughput of robot-processed products with optimal efficiency. The humanoid robots considered in this study consist of two pairs of six-degree-of-freedom (6-DOF) robot manipulators, and the inverse kinematics problem of the 6-DOF arms is addressed using metaheuristic approaches inspired by biomimetic principles. Our approach is experimentally validated, and the results demonstrate high accuracy and performance compared to other approaches reported in the literature. Our approach achieved an average efficiency improvement of 40% in 70-robot systems, 20% in 30-robot systems, and 10% in 10-robot systems in terms of production throughput compared to systems without a controller.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191205/pdf/","citationCount":"0","resultStr":"{\"title\":\"Task Scheduling of Multiple Humanoid Robot Manipulators by Using Symbolic Control.\",\"authors\":\"Mete Özbaltan, Nihan Özbaltan, Hazal Su Bıçakcı Yeşilkaya, Murat Demir, Cihat Şeker, Merve Yıldırım\",\"doi\":\"10.3390/biomimetics10060346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Task scheduling for multiple humanoid robot manipulators in industrial and collaborative settings remains a significant challenge due to the complexity of coordination, resource sharing, and real-time decision-making. In this study, we propose a framework for modeling task scheduling for multiple humanoid robot manipulators by using the symbolic discrete controller synthesis technique. We encode the task scheduling problem as discrete events using parallel synchronous dataflow equations and apply our synthesis algorithms to manage the task scheduling of multiple humanoid robots via the resulting controller. The control objectives encompass the fundamental behaviors of the system, strict rules, and mutual exclusions over shared resources, categorized as the safety property, whereas the optimization objectives are directed toward maximizing the throughput of robot-processed products with optimal efficiency. The humanoid robots considered in this study consist of two pairs of six-degree-of-freedom (6-DOF) robot manipulators, and the inverse kinematics problem of the 6-DOF arms is addressed using metaheuristic approaches inspired by biomimetic principles. Our approach is experimentally validated, and the results demonstrate high accuracy and performance compared to other approaches reported in the literature. Our approach achieved an average efficiency improvement of 40% in 70-robot systems, 20% in 30-robot systems, and 10% in 10-robot systems in terms of production throughput compared to systems without a controller.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10060346\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060346","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Task Scheduling of Multiple Humanoid Robot Manipulators by Using Symbolic Control.
Task scheduling for multiple humanoid robot manipulators in industrial and collaborative settings remains a significant challenge due to the complexity of coordination, resource sharing, and real-time decision-making. In this study, we propose a framework for modeling task scheduling for multiple humanoid robot manipulators by using the symbolic discrete controller synthesis technique. We encode the task scheduling problem as discrete events using parallel synchronous dataflow equations and apply our synthesis algorithms to manage the task scheduling of multiple humanoid robots via the resulting controller. The control objectives encompass the fundamental behaviors of the system, strict rules, and mutual exclusions over shared resources, categorized as the safety property, whereas the optimization objectives are directed toward maximizing the throughput of robot-processed products with optimal efficiency. The humanoid robots considered in this study consist of two pairs of six-degree-of-freedom (6-DOF) robot manipulators, and the inverse kinematics problem of the 6-DOF arms is addressed using metaheuristic approaches inspired by biomimetic principles. Our approach is experimentally validated, and the results demonstrate high accuracy and performance compared to other approaches reported in the literature. Our approach achieved an average efficiency improvement of 40% in 70-robot systems, 20% in 30-robot systems, and 10% in 10-robot systems in terms of production throughput compared to systems without a controller.