Morena Nocchetti, Michela Piccinini, Antonio Scafuri, Alessandro Di Michele, Valeria Ambrogi
{"title":"氟化硅水滑石作为牙科复合材料的功能性和多组分填料。","authors":"Morena Nocchetti, Michela Piccinini, Antonio Scafuri, Alessandro Di Michele, Valeria Ambrogi","doi":"10.3390/biomimetics10060398","DOIUrl":null,"url":null,"abstract":"<p><p>Acrylic resin composites with a high filler loading, consisting of a fluoride-containing hydrotalcite incorporated into silica nanoparticles, were prepared. The filler was obtained by a multi-step process. First, ZnAl hydrotalcite in fluoride form (HTlc/F) was functionalised with tetraethoxysilane to form Si-O-M bonds (M = Al or Zn) with the brucitic layers. The ethoxysilane groups exposed on the layers were used as nucleation seeds for silica nanoparticles. The composite, named SiO<sub>2</sub>@HTlc/F, was then functionalised with 3-(trimethoxysilyl)-propyl methacrylate groups and used as a filler for acrylic resins. The methacrylate groups on the surface of the inorganic composite participated in the polymerisation process of the resin by minimising the phase separation between inorganic and polymer through the formation of chemical bonds at the polymer-inorganic interface. The filler in the resin increases the degree of polymerisation, bringing it to values very close to 100%. Finally, preliminary studies on the release of fluoride anions showed that they are released slowly over time.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190227/pdf/","citationCount":"0","resultStr":"{\"title\":\"Silanised Fluoride Hydrotalcites as Functional and Multicomponent Fillers for Dental Composites.\",\"authors\":\"Morena Nocchetti, Michela Piccinini, Antonio Scafuri, Alessandro Di Michele, Valeria Ambrogi\",\"doi\":\"10.3390/biomimetics10060398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acrylic resin composites with a high filler loading, consisting of a fluoride-containing hydrotalcite incorporated into silica nanoparticles, were prepared. The filler was obtained by a multi-step process. First, ZnAl hydrotalcite in fluoride form (HTlc/F) was functionalised with tetraethoxysilane to form Si-O-M bonds (M = Al or Zn) with the brucitic layers. The ethoxysilane groups exposed on the layers were used as nucleation seeds for silica nanoparticles. The composite, named SiO<sub>2</sub>@HTlc/F, was then functionalised with 3-(trimethoxysilyl)-propyl methacrylate groups and used as a filler for acrylic resins. The methacrylate groups on the surface of the inorganic composite participated in the polymerisation process of the resin by minimising the phase separation between inorganic and polymer through the formation of chemical bonds at the polymer-inorganic interface. The filler in the resin increases the degree of polymerisation, bringing it to values very close to 100%. Finally, preliminary studies on the release of fluoride anions showed that they are released slowly over time.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10060398\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060398","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Silanised Fluoride Hydrotalcites as Functional and Multicomponent Fillers for Dental Composites.
Acrylic resin composites with a high filler loading, consisting of a fluoride-containing hydrotalcite incorporated into silica nanoparticles, were prepared. The filler was obtained by a multi-step process. First, ZnAl hydrotalcite in fluoride form (HTlc/F) was functionalised with tetraethoxysilane to form Si-O-M bonds (M = Al or Zn) with the brucitic layers. The ethoxysilane groups exposed on the layers were used as nucleation seeds for silica nanoparticles. The composite, named SiO2@HTlc/F, was then functionalised with 3-(trimethoxysilyl)-propyl methacrylate groups and used as a filler for acrylic resins. The methacrylate groups on the surface of the inorganic composite participated in the polymerisation process of the resin by minimising the phase separation between inorganic and polymer through the formation of chemical bonds at the polymer-inorganic interface. The filler in the resin increases the degree of polymerisation, bringing it to values very close to 100%. Finally, preliminary studies on the release of fluoride anions showed that they are released slowly over time.