Jamie L Mankiewicz, Guangtu Gao, Timothy Leeds, Beth M Cleveland
{"title":"虹鳟高、低鱼片产量选择性选育的转录组学分析。","authors":"Jamie L Mankiewicz, Guangtu Gao, Timothy Leeds, Beth M Cleveland","doi":"10.1007/s10126-025-10479-0","DOIUrl":null,"url":null,"abstract":"<p><p>The fillet yield phenotype is a trait that can be improved in aquaculture species through conventional selective breeding. This approach was applied to rainbow trout for three consecutive generations of selection to produce a high-yield line (HY) that exhibits 2.5 percentage points higher fillet yield compared to a low-yield line (LY). To characterize the genetic and physiological mechanisms contributing to the HY phenotype, transcriptomic analysis of liver and skeletal muscle was performed at three stages of development, 2 g, 60 g, and 300 g, which corresponded to 35, 208, and 277 days post-hatch. Functional analysis of differentially expressed genes (DEG) suggests that increased muscle yield in the HY line is partially driven by greater hyperplasia at 60 g; although, higher rates of protein accretion, primarily attributed to lower rates of protein degradation, promote muscle cell hypertrophy during all stages of development. Additionally, DEGs support reductions in glycolysis in the HY muscle, with increased activity of the more efficient citric acid cycle and oxidative phosphorylation reactions for energy production compared to the LY line. In the liver, DEGs indicate unique nutrient utilization mechanisms in the HY line that support reduced visceral adiposity compared to the LY line. These findings provide insight into the physiology and metabolism driving the high fillet yield phenotype; this information is useful for the development of genomic markers to enhance breeding strategies toward the improvement of performance traits.</p>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 4","pages":"102"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198287/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic Profiles of Rainbow Trout (Oncorhynchus mykiss) Selectively Bred for High and Low Fillet Yield.\",\"authors\":\"Jamie L Mankiewicz, Guangtu Gao, Timothy Leeds, Beth M Cleveland\",\"doi\":\"10.1007/s10126-025-10479-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fillet yield phenotype is a trait that can be improved in aquaculture species through conventional selective breeding. This approach was applied to rainbow trout for three consecutive generations of selection to produce a high-yield line (HY) that exhibits 2.5 percentage points higher fillet yield compared to a low-yield line (LY). To characterize the genetic and physiological mechanisms contributing to the HY phenotype, transcriptomic analysis of liver and skeletal muscle was performed at three stages of development, 2 g, 60 g, and 300 g, which corresponded to 35, 208, and 277 days post-hatch. Functional analysis of differentially expressed genes (DEG) suggests that increased muscle yield in the HY line is partially driven by greater hyperplasia at 60 g; although, higher rates of protein accretion, primarily attributed to lower rates of protein degradation, promote muscle cell hypertrophy during all stages of development. Additionally, DEGs support reductions in glycolysis in the HY muscle, with increased activity of the more efficient citric acid cycle and oxidative phosphorylation reactions for energy production compared to the LY line. In the liver, DEGs indicate unique nutrient utilization mechanisms in the HY line that support reduced visceral adiposity compared to the LY line. These findings provide insight into the physiology and metabolism driving the high fillet yield phenotype; this information is useful for the development of genomic markers to enhance breeding strategies toward the improvement of performance traits.</p>\",\"PeriodicalId\":690,\"journal\":{\"name\":\"Marine Biotechnology\",\"volume\":\"27 4\",\"pages\":\"102\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198287/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10126-025-10479-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10126-025-10479-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Transcriptomic Profiles of Rainbow Trout (Oncorhynchus mykiss) Selectively Bred for High and Low Fillet Yield.
The fillet yield phenotype is a trait that can be improved in aquaculture species through conventional selective breeding. This approach was applied to rainbow trout for three consecutive generations of selection to produce a high-yield line (HY) that exhibits 2.5 percentage points higher fillet yield compared to a low-yield line (LY). To characterize the genetic and physiological mechanisms contributing to the HY phenotype, transcriptomic analysis of liver and skeletal muscle was performed at three stages of development, 2 g, 60 g, and 300 g, which corresponded to 35, 208, and 277 days post-hatch. Functional analysis of differentially expressed genes (DEG) suggests that increased muscle yield in the HY line is partially driven by greater hyperplasia at 60 g; although, higher rates of protein accretion, primarily attributed to lower rates of protein degradation, promote muscle cell hypertrophy during all stages of development. Additionally, DEGs support reductions in glycolysis in the HY muscle, with increased activity of the more efficient citric acid cycle and oxidative phosphorylation reactions for energy production compared to the LY line. In the liver, DEGs indicate unique nutrient utilization mechanisms in the HY line that support reduced visceral adiposity compared to the LY line. These findings provide insight into the physiology and metabolism driving the high fillet yield phenotype; this information is useful for the development of genomic markers to enhance breeding strategies toward the improvement of performance traits.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.