巴基斯坦重症监护病房患者鲍曼不动杆菌中替加环素耐药介导tet(Y)基因的检测

IF 1.9 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Zainab Tufail, Kokab Jabeen, Mahnoor Chaudhry, Sana Mustafa, Sidrah Saleem, Afshan Zia, Fareeha Imran, Waleed Tariq, Muhammad Junaid Tahir, Muhammad Sohaib Asghar
{"title":"巴基斯坦重症监护病房患者鲍曼不动杆菌中替加环素耐药介导tet(Y)基因的检测","authors":"Zainab Tufail, Kokab Jabeen, Mahnoor Chaudhry, Sana Mustafa, Sidrah Saleem, Afshan Zia, Fareeha Imran, Waleed Tariq, Muhammad Junaid Tahir, Muhammad Sohaib Asghar","doi":"10.4269/ajtmh.24-0295","DOIUrl":null,"url":null,"abstract":"<p><p>Acinetobacter baumannii (A. baumannii) is a Gram-negative, nonfermenting bacterium implicated as a major cause of opportunistic infections in healthcare settings because it is a multidrug-resistant organism. Tigecycline was developed to circumvent the prevalent mechanism of A. baumannii resistance against tetracycline. This study aims to determine the frequency of tigecycline resistance and to characterize the tigecycline-resistant tet(Y), tet(X), and tet(A) genes in A. baumannii clinical isolates. A descriptive cross-sectional study was conducted at Lahore General Hospital (LGH), Lahore, Pakistan, from February 2023 to February 2024. A total of 195 A. baumannii samples were isolated from various samples collected from patients admitted to the intensive care unit of LGH over a period of 1 year. The antimicrobial susceptibility of A. baumannii was assessed using the Kirby-Bauer disc diffusion assay, and the results were reported according to the Clinical and Laboratory Standards Institute 2022 guidelines. The activity of tigecycline was reported according to the British Society for Antimicrobial Chemotherapy 2021 guidelines. The detection of tigecycline resistance genes tet(Y), tet(X), and tet(A) was performed using polymerase chain reaction, and the amplified products were confirmed using Sanger sequencing. Acinetobacter baumannii were resistant to multiple antibiotics. Minocycline was the most effective antibiotic, with 10.8% resistance, whereas cefotaxime was the least effective, with 74.4% resistance in 195 isolates of A. baumannii. Resistance to tigecycline was detected in 9% of isolates of A. baumannii. The tet(A) gene was the most frequently found gene, present in 20% of the tigecycline-resistant isolates, followed by tet(X) and tet(Y) genes in 18% and 9% of isolates, respectively. A high frequency of plasmid-mediated tigecycline resistance was detected in A. baumannii samples, with a high prevalence of tet(Y), tet(X), and tet(A) genes. This emphasizes the need for antibiotic stewardship, the detection of resistance profiles, and understanding underlying molecular mechanisms to plan clinical management effectively.</p>","PeriodicalId":7752,"journal":{"name":"American Journal of Tropical Medicine and Hygiene","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of the Tigecycline Resistance-Mediating tet(Y) Gene in Acinetobacter baumannii Isolates from Intensive Care Unit Patients in Pakistan.\",\"authors\":\"Zainab Tufail, Kokab Jabeen, Mahnoor Chaudhry, Sana Mustafa, Sidrah Saleem, Afshan Zia, Fareeha Imran, Waleed Tariq, Muhammad Junaid Tahir, Muhammad Sohaib Asghar\",\"doi\":\"10.4269/ajtmh.24-0295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acinetobacter baumannii (A. baumannii) is a Gram-negative, nonfermenting bacterium implicated as a major cause of opportunistic infections in healthcare settings because it is a multidrug-resistant organism. Tigecycline was developed to circumvent the prevalent mechanism of A. baumannii resistance against tetracycline. This study aims to determine the frequency of tigecycline resistance and to characterize the tigecycline-resistant tet(Y), tet(X), and tet(A) genes in A. baumannii clinical isolates. A descriptive cross-sectional study was conducted at Lahore General Hospital (LGH), Lahore, Pakistan, from February 2023 to February 2024. A total of 195 A. baumannii samples were isolated from various samples collected from patients admitted to the intensive care unit of LGH over a period of 1 year. The antimicrobial susceptibility of A. baumannii was assessed using the Kirby-Bauer disc diffusion assay, and the results were reported according to the Clinical and Laboratory Standards Institute 2022 guidelines. The activity of tigecycline was reported according to the British Society for Antimicrobial Chemotherapy 2021 guidelines. The detection of tigecycline resistance genes tet(Y), tet(X), and tet(A) was performed using polymerase chain reaction, and the amplified products were confirmed using Sanger sequencing. Acinetobacter baumannii were resistant to multiple antibiotics. Minocycline was the most effective antibiotic, with 10.8% resistance, whereas cefotaxime was the least effective, with 74.4% resistance in 195 isolates of A. baumannii. Resistance to tigecycline was detected in 9% of isolates of A. baumannii. The tet(A) gene was the most frequently found gene, present in 20% of the tigecycline-resistant isolates, followed by tet(X) and tet(Y) genes in 18% and 9% of isolates, respectively. A high frequency of plasmid-mediated tigecycline resistance was detected in A. baumannii samples, with a high prevalence of tet(Y), tet(X), and tet(A) genes. This emphasizes the need for antibiotic stewardship, the detection of resistance profiles, and understanding underlying molecular mechanisms to plan clinical management effectively.</p>\",\"PeriodicalId\":7752,\"journal\":{\"name\":\"American Journal of Tropical Medicine and Hygiene\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Tropical Medicine and Hygiene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4269/ajtmh.24-0295\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Tropical Medicine and Hygiene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4269/ajtmh.24-0295","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

鲍曼不动杆菌(鲍曼不动杆菌)是一种革兰氏阴性的非发酵细菌,是医疗机构中机会性感染的主要原因,因为它是一种多重耐药生物。替加环素的开发是为了规避鲍曼不动杆菌对四环素的普遍耐药机制。本研究旨在确定鲍曼不动杆菌对替加环素耐药的频率,并对替加环素耐药tet(Y)、tet(X)和tet(A)基因进行表征。从2023年2月至2024年2月,在巴基斯坦拉合尔拉合尔总医院(LGH)进行了一项描述性横断面研究。在1年的时间里,从LGH重症监护病房收治的患者收集的各种样本中,共分离出195个鲍曼不动杆菌样本。采用Kirby-Bauer圆盘扩散法评估鲍曼不动杆菌的抗菌敏感性,并根据临床和实验室标准协会2022年指南报告结果。替加环素的活性是根据英国抗微生物化疗协会2021年指南报告的。采用聚合酶链反应检测替加环素耐药基因tet(Y)、tet(X)和tet(A),扩增产物采用Sanger测序法进行鉴定。鲍曼不动杆菌对多种抗生素耐药。195株鲍曼不动杆菌中,米诺环素的耐药率最高,为10.8%,头孢噻肟的耐药率最低,为74.4%。9%的鲍曼不动杆菌对替加环素耐药。tet(A)基因是最常见的基因,在20%的替加环素耐药菌株中存在,其次是tet(X)和tet(Y)基因,分别在18%和9%的菌株中存在。高频率的plasmid-mediated tigecycline阻力A . baumannii样本中,检测出,普遍的春节(Y),春节(X)和春节(A)基因。这强调需要抗生素管理,检测耐药概况,并了解潜在的分子机制,以有效地规划临床管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of the Tigecycline Resistance-Mediating tet(Y) Gene in Acinetobacter baumannii Isolates from Intensive Care Unit Patients in Pakistan.

Acinetobacter baumannii (A. baumannii) is a Gram-negative, nonfermenting bacterium implicated as a major cause of opportunistic infections in healthcare settings because it is a multidrug-resistant organism. Tigecycline was developed to circumvent the prevalent mechanism of A. baumannii resistance against tetracycline. This study aims to determine the frequency of tigecycline resistance and to characterize the tigecycline-resistant tet(Y), tet(X), and tet(A) genes in A. baumannii clinical isolates. A descriptive cross-sectional study was conducted at Lahore General Hospital (LGH), Lahore, Pakistan, from February 2023 to February 2024. A total of 195 A. baumannii samples were isolated from various samples collected from patients admitted to the intensive care unit of LGH over a period of 1 year. The antimicrobial susceptibility of A. baumannii was assessed using the Kirby-Bauer disc diffusion assay, and the results were reported according to the Clinical and Laboratory Standards Institute 2022 guidelines. The activity of tigecycline was reported according to the British Society for Antimicrobial Chemotherapy 2021 guidelines. The detection of tigecycline resistance genes tet(Y), tet(X), and tet(A) was performed using polymerase chain reaction, and the amplified products were confirmed using Sanger sequencing. Acinetobacter baumannii were resistant to multiple antibiotics. Minocycline was the most effective antibiotic, with 10.8% resistance, whereas cefotaxime was the least effective, with 74.4% resistance in 195 isolates of A. baumannii. Resistance to tigecycline was detected in 9% of isolates of A. baumannii. The tet(A) gene was the most frequently found gene, present in 20% of the tigecycline-resistant isolates, followed by tet(X) and tet(Y) genes in 18% and 9% of isolates, respectively. A high frequency of plasmid-mediated tigecycline resistance was detected in A. baumannii samples, with a high prevalence of tet(Y), tet(X), and tet(A) genes. This emphasizes the need for antibiotic stewardship, the detection of resistance profiles, and understanding underlying molecular mechanisms to plan clinical management effectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Tropical Medicine and Hygiene
American Journal of Tropical Medicine and Hygiene 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.20
自引率
3.00%
发文量
508
审稿时长
3 months
期刊介绍: The American Journal of Tropical Medicine and Hygiene, established in 1921, is published monthly by the American Society of Tropical Medicine and Hygiene. It is among the top-ranked tropical medicine journals in the world publishing original scientific articles and the latest science covering new research with an emphasis on population, clinical and laboratory science and the application of technology in the fields of tropical medicine, parasitology, immunology, infectious diseases, epidemiology, basic and molecular biology, virology and international medicine. The Journal publishes unsolicited peer-reviewed manuscripts, review articles, short reports, images in Clinical Tropical Medicine, case studies, reports on the efficacy of new drugs and methods of treatment, prevention and control methodologies,new testing methods and equipment, book reports and Letters to the Editor. Topics range from applied epidemiology in such relevant areas as AIDS to the molecular biology of vaccine development. The Journal is of interest to epidemiologists, parasitologists, virologists, clinicians, entomologists and public health officials who are concerned with health issues of the tropics, developing nations and emerging infectious diseases. Major granting institutions including philanthropic and governmental institutions active in the public health field, and medical and scientific libraries throughout the world purchase the Journal. Two or more supplements to the Journal on topics of special interest are published annually. These supplements represent comprehensive and multidisciplinary discussions of issues of concern to tropical disease specialists and health issues of developing countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信