Anne Cucchiarini, Filip Kledus, Yu Luo, Václav Brázda, Jean-Louis Mergny
{"title":"带盐颗粒的四联体:阳离子类型和浓度对DNA G4稳定性的影响。","authors":"Anne Cucchiarini, Filip Kledus, Yu Luo, Václav Brázda, Jean-Louis Mergny","doi":"10.1007/s00249-025-01772-w","DOIUrl":null,"url":null,"abstract":"<p><p>G-quadruplexes (G4) are stabilized by intra-quartet hydrogen bonds stacking between quartets, as well as specific and non-specific ionic interactions. Cation effects on G-quadruplexes differ significantly from those on duplexes, and specific cation coordination is indeed required to stabilize G4 structures. Most studies so far involve \"standard\" concentrations of potassium or sodium cations because of their prevalence in human cells, but several other monovalent and divalent cations may promote quadruplex formation. In addition, ionic strength may be different in other organisms such as Halophiles: the intracellular cation (potassium) concentration in salt-loving organisms such as Haloferax volcanii can be extremely high. In this study, we first performed a bioinformatics analysis of G4 propensity in halophiles and analyzed the impact of altering ionic strength or ionic balance on G4 or hairpin duplex stability. We then present a detailed and quantitative assessment of salt effect on a variety of duplex and quadruplex sequences. Over a dozen different quadruplex and duplex sequences were investigated by FRET melting and UV melting experiments. In addition, changes in sodium/potassium balance possibly occurring in human cells have a modest effect on G4-duplex competition. We also confirm that lithium is rather a \"G4-indifferent\" than a G4-destabilizing cation.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadruplexes with a grain of salt: influence of cation type and concentration on DNA G4 stability.\",\"authors\":\"Anne Cucchiarini, Filip Kledus, Yu Luo, Václav Brázda, Jean-Louis Mergny\",\"doi\":\"10.1007/s00249-025-01772-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>G-quadruplexes (G4) are stabilized by intra-quartet hydrogen bonds stacking between quartets, as well as specific and non-specific ionic interactions. Cation effects on G-quadruplexes differ significantly from those on duplexes, and specific cation coordination is indeed required to stabilize G4 structures. Most studies so far involve \\\"standard\\\" concentrations of potassium or sodium cations because of their prevalence in human cells, but several other monovalent and divalent cations may promote quadruplex formation. In addition, ionic strength may be different in other organisms such as Halophiles: the intracellular cation (potassium) concentration in salt-loving organisms such as Haloferax volcanii can be extremely high. In this study, we first performed a bioinformatics analysis of G4 propensity in halophiles and analyzed the impact of altering ionic strength or ionic balance on G4 or hairpin duplex stability. We then present a detailed and quantitative assessment of salt effect on a variety of duplex and quadruplex sequences. Over a dozen different quadruplex and duplex sequences were investigated by FRET melting and UV melting experiments. In addition, changes in sodium/potassium balance possibly occurring in human cells have a modest effect on G4-duplex competition. We also confirm that lithium is rather a \\\"G4-indifferent\\\" than a G4-destabilizing cation.</p>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1007/s00249-025-01772-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01772-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
g -四重络合物(G4)是通过四重奏内氢键的叠加以及特异性和非特异性离子相互作用来稳定的。阳离子对g -四聚物的影响与对双聚物的影响有显著差异,稳定G4结构确实需要特定的阳离子配位。到目前为止,大多数研究都涉及“标准”浓度的钾或钠阳离子,因为它们在人类细胞中普遍存在,但其他一些单价和二价阳离子可能促进四价离子的形成。此外,离子强度在其他生物(如嗜盐菌)中可能是不同的:嗜盐生物(如火山盐藻)的细胞内阳离子(钾)浓度可能非常高。在这项研究中,我们首先对嗜盐菌的G4倾向进行了生物信息学分析,并分析了改变离子强度或离子平衡对G4或发夹双相稳定性的影响。然后,我们详细和定量地评估了盐对多种双链和四链序列的影响。通过FRET熔化和UV熔化实验研究了十几种不同的四重和双工序列。此外,可能发生在人类细胞中的钠/钾平衡的变化对g4 -双工竞争有一定的影响。我们还证实,锂是一个“不影响g4的”阳离子,而不是一个破坏g4稳定的阳离子。
Quadruplexes with a grain of salt: influence of cation type and concentration on DNA G4 stability.
G-quadruplexes (G4) are stabilized by intra-quartet hydrogen bonds stacking between quartets, as well as specific and non-specific ionic interactions. Cation effects on G-quadruplexes differ significantly from those on duplexes, and specific cation coordination is indeed required to stabilize G4 structures. Most studies so far involve "standard" concentrations of potassium or sodium cations because of their prevalence in human cells, but several other monovalent and divalent cations may promote quadruplex formation. In addition, ionic strength may be different in other organisms such as Halophiles: the intracellular cation (potassium) concentration in salt-loving organisms such as Haloferax volcanii can be extremely high. In this study, we first performed a bioinformatics analysis of G4 propensity in halophiles and analyzed the impact of altering ionic strength or ionic balance on G4 or hairpin duplex stability. We then present a detailed and quantitative assessment of salt effect on a variety of duplex and quadruplex sequences. Over a dozen different quadruplex and duplex sequences were investigated by FRET melting and UV melting experiments. In addition, changes in sodium/potassium balance possibly occurring in human cells have a modest effect on G4-duplex competition. We also confirm that lithium is rather a "G4-indifferent" than a G4-destabilizing cation.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.