{"title":"量子力学系统中Weyl异常环的实现与拓扑表征。","authors":"Hao-Long Zhang, Pei-Rong Han, Xue-Jia Yu, Shou-Bang Yang, Jia-Hao Lü, Wen Ning, Fan Wu, Qi-Ping Su, Chui-Ping Yang, Zhen-Biao Yang, Shi-Biao Zheng","doi":"10.1016/j.scib.2025.05.041","DOIUrl":null,"url":null,"abstract":"<p><p>Non-Hermiticity can lead to the emergence of many intriguing phenomena that are absent in Hermitian systems, enabled by exceptional topological defects, among which Weyl exceptional rings (WER) are particularly interesting. The topology of a WER can be characterized by the quantized Berry phase and a nonzero Chern number, both encoded in the eigenvectors of the non-Hermitian Hamiltonian. So far, WERs have been realized with classical wave systems, whose eigenvectors can be well described by classical physics. We here report the first quantum-mechanical implementation of WERs and investigate the related topology transitions. The experiment system consists of a superconducting qubit and a dissipative resonator, coupled to each other. The high flexibility of the system enables us to characterize its eigenvectors on different manifolds of parameter space, each of which corresponds to a quantum-mechanical entangled state. We extract both the quantized Berry phase and Chern number from these eigenvectors, and demonstrate the topological transition triggered by shrinking the size of the corresponding loop or manifold in parameter space.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":"2446-2450"},"PeriodicalIF":21.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation and topological characterization of Weyl exceptional rings in quantum-mechanical systems.\",\"authors\":\"Hao-Long Zhang, Pei-Rong Han, Xue-Jia Yu, Shou-Bang Yang, Jia-Hao Lü, Wen Ning, Fan Wu, Qi-Ping Su, Chui-Ping Yang, Zhen-Biao Yang, Shi-Biao Zheng\",\"doi\":\"10.1016/j.scib.2025.05.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-Hermiticity can lead to the emergence of many intriguing phenomena that are absent in Hermitian systems, enabled by exceptional topological defects, among which Weyl exceptional rings (WER) are particularly interesting. The topology of a WER can be characterized by the quantized Berry phase and a nonzero Chern number, both encoded in the eigenvectors of the non-Hermitian Hamiltonian. So far, WERs have been realized with classical wave systems, whose eigenvectors can be well described by classical physics. We here report the first quantum-mechanical implementation of WERs and investigate the related topology transitions. The experiment system consists of a superconducting qubit and a dissipative resonator, coupled to each other. The high flexibility of the system enables us to characterize its eigenvectors on different manifolds of parameter space, each of which corresponds to a quantum-mechanical entangled state. We extract both the quantized Berry phase and Chern number from these eigenvectors, and demonstrate the topological transition triggered by shrinking the size of the corresponding loop or manifold in parameter space.</p>\",\"PeriodicalId\":421,\"journal\":{\"name\":\"Science Bulletin\",\"volume\":\" \",\"pages\":\"2446-2450\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Bulletin\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scib.2025.05.041\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2025.05.041","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Implementation and topological characterization of Weyl exceptional rings in quantum-mechanical systems.
Non-Hermiticity can lead to the emergence of many intriguing phenomena that are absent in Hermitian systems, enabled by exceptional topological defects, among which Weyl exceptional rings (WER) are particularly interesting. The topology of a WER can be characterized by the quantized Berry phase and a nonzero Chern number, both encoded in the eigenvectors of the non-Hermitian Hamiltonian. So far, WERs have been realized with classical wave systems, whose eigenvectors can be well described by classical physics. We here report the first quantum-mechanical implementation of WERs and investigate the related topology transitions. The experiment system consists of a superconducting qubit and a dissipative resonator, coupled to each other. The high flexibility of the system enables us to characterize its eigenvectors on different manifolds of parameter space, each of which corresponds to a quantum-mechanical entangled state. We extract both the quantized Berry phase and Chern number from these eigenvectors, and demonstrate the topological transition triggered by shrinking the size of the corresponding loop or manifold in parameter space.
期刊介绍:
Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.