直微通道中亚- 25nm粒子的无鞘弹性惯性聚焦。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-25 DOI:10.1002/smll.202503369
Selim Tanriverdi, Javier Cruz, Shahriar Habibi, Taras Sych, Martim Costa, Gustaf Mårtensson, André Görgens, Samir EL Andaloussi, Luca Brandt, Outi Tammisola, Erdinc Sezgin, Aman Russom
{"title":"直微通道中亚- 25nm粒子的无鞘弹性惯性聚焦。","authors":"Selim Tanriverdi,&nbsp;Javier Cruz,&nbsp;Shahriar Habibi,&nbsp;Taras Sych,&nbsp;Martim Costa,&nbsp;Gustaf Mårtensson,&nbsp;André Görgens,&nbsp;Samir EL Andaloussi,&nbsp;Luca Brandt,&nbsp;Outi Tammisola,&nbsp;Erdinc Sezgin,&nbsp;Aman Russom","doi":"10.1002/smll.202503369","DOIUrl":null,"url":null,"abstract":"<p>Nanoscale biological particles, such as lipoproteins (10–80 nm) or extracellular vesicles (30–200 nm), play pivotal roles in health and disease, including conditions like cardiovascular disorders and cancer. Their effective analysis is crucial for applications in diagnostics, quality control, and nanomedicine development. While elasto-inertial focusing offers a powerful method to manipulate particles without external fields, achieving consistent focusing of nanoparticles (&lt;500 nm) has remained a challenge. In this study, elasto-inertial focusing of nanoparticles as small as 25 nm is experimentally demonstrated using straight high-aspect-ratio microchannels in a sheathless flow. Systematic investigations reveal the influence of channel width, particle size, viscoelastic concentration, and flow rate on focusing behavior. Additionally, through numerical simulations and experimental validation, insights are provided into particle migration dynamics and viscoelastic forces governing nanoparticle focusing. Finally, biological particles, including liposomes (90–140 nm), extracellular vesicles (100 nm), and lipoproteins (10–25 nm) is successfully focused, under optimized conditions, showcasing potential applications in medical diagnostics and targeted drug delivery. These findings mark a significant advancement toward size-based high-resolution particle separation, with implications for biomedicine and environmental sciences.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 33","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202503369","citationCount":"0","resultStr":"{\"title\":\"Sheathless Elasto-Inertial Focusing of Sub-25 Nm Particles in Straight Microchannels\",\"authors\":\"Selim Tanriverdi,&nbsp;Javier Cruz,&nbsp;Shahriar Habibi,&nbsp;Taras Sych,&nbsp;Martim Costa,&nbsp;Gustaf Mårtensson,&nbsp;André Görgens,&nbsp;Samir EL Andaloussi,&nbsp;Luca Brandt,&nbsp;Outi Tammisola,&nbsp;Erdinc Sezgin,&nbsp;Aman Russom\",\"doi\":\"10.1002/smll.202503369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoscale biological particles, such as lipoproteins (10–80 nm) or extracellular vesicles (30–200 nm), play pivotal roles in health and disease, including conditions like cardiovascular disorders and cancer. Their effective analysis is crucial for applications in diagnostics, quality control, and nanomedicine development. While elasto-inertial focusing offers a powerful method to manipulate particles without external fields, achieving consistent focusing of nanoparticles (&lt;500 nm) has remained a challenge. In this study, elasto-inertial focusing of nanoparticles as small as 25 nm is experimentally demonstrated using straight high-aspect-ratio microchannels in a sheathless flow. Systematic investigations reveal the influence of channel width, particle size, viscoelastic concentration, and flow rate on focusing behavior. Additionally, through numerical simulations and experimental validation, insights are provided into particle migration dynamics and viscoelastic forces governing nanoparticle focusing. Finally, biological particles, including liposomes (90–140 nm), extracellular vesicles (100 nm), and lipoproteins (10–25 nm) is successfully focused, under optimized conditions, showcasing potential applications in medical diagnostics and targeted drug delivery. These findings mark a significant advancement toward size-based high-resolution particle separation, with implications for biomedicine and environmental sciences.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 33\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202503369\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503369\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503369","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米级生物颗粒,如脂蛋白(10-80纳米)或细胞外囊泡(30-200纳米),在健康和疾病中发挥着关键作用,包括心血管疾病和癌症等病症。它们的有效分析对于诊断、质量控制和纳米药物开发的应用至关重要。而弹性惯性聚焦提供了一种强大的方法来操纵没有外场的粒子,实现纳米粒子的一致聚焦(
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sheathless Elasto-Inertial Focusing of Sub-25 Nm Particles in Straight Microchannels

Sheathless Elasto-Inertial Focusing of Sub-25 Nm Particles in Straight Microchannels

Nanoscale biological particles, such as lipoproteins (10–80 nm) or extracellular vesicles (30–200 nm), play pivotal roles in health and disease, including conditions like cardiovascular disorders and cancer. Their effective analysis is crucial for applications in diagnostics, quality control, and nanomedicine development. While elasto-inertial focusing offers a powerful method to manipulate particles without external fields, achieving consistent focusing of nanoparticles (<500 nm) has remained a challenge. In this study, elasto-inertial focusing of nanoparticles as small as 25 nm is experimentally demonstrated using straight high-aspect-ratio microchannels in a sheathless flow. Systematic investigations reveal the influence of channel width, particle size, viscoelastic concentration, and flow rate on focusing behavior. Additionally, through numerical simulations and experimental validation, insights are provided into particle migration dynamics and viscoelastic forces governing nanoparticle focusing. Finally, biological particles, including liposomes (90–140 nm), extracellular vesicles (100 nm), and lipoproteins (10–25 nm) is successfully focused, under optimized conditions, showcasing potential applications in medical diagnostics and targeted drug delivery. These findings mark a significant advancement toward size-based high-resolution particle separation, with implications for biomedicine and environmental sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信