Selim Tanriverdi, Javier Cruz, Shahriar Habibi, Taras Sych, Martim Costa, Gustaf Mårtensson, André Görgens, Samir EL Andaloussi, Luca Brandt, Outi Tammisola, Erdinc Sezgin, Aman Russom
{"title":"直微通道中亚- 25nm粒子的无鞘弹性惯性聚焦。","authors":"Selim Tanriverdi, Javier Cruz, Shahriar Habibi, Taras Sych, Martim Costa, Gustaf Mårtensson, André Görgens, Samir EL Andaloussi, Luca Brandt, Outi Tammisola, Erdinc Sezgin, Aman Russom","doi":"10.1002/smll.202503369","DOIUrl":null,"url":null,"abstract":"<p>Nanoscale biological particles, such as lipoproteins (10–80 nm) or extracellular vesicles (30–200 nm), play pivotal roles in health and disease, including conditions like cardiovascular disorders and cancer. Their effective analysis is crucial for applications in diagnostics, quality control, and nanomedicine development. While elasto-inertial focusing offers a powerful method to manipulate particles without external fields, achieving consistent focusing of nanoparticles (<500 nm) has remained a challenge. In this study, elasto-inertial focusing of nanoparticles as small as 25 nm is experimentally demonstrated using straight high-aspect-ratio microchannels in a sheathless flow. Systematic investigations reveal the influence of channel width, particle size, viscoelastic concentration, and flow rate on focusing behavior. Additionally, through numerical simulations and experimental validation, insights are provided into particle migration dynamics and viscoelastic forces governing nanoparticle focusing. Finally, biological particles, including liposomes (90–140 nm), extracellular vesicles (100 nm), and lipoproteins (10–25 nm) is successfully focused, under optimized conditions, showcasing potential applications in medical diagnostics and targeted drug delivery. These findings mark a significant advancement toward size-based high-resolution particle separation, with implications for biomedicine and environmental sciences.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 33","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202503369","citationCount":"0","resultStr":"{\"title\":\"Sheathless Elasto-Inertial Focusing of Sub-25 Nm Particles in Straight Microchannels\",\"authors\":\"Selim Tanriverdi, Javier Cruz, Shahriar Habibi, Taras Sych, Martim Costa, Gustaf Mårtensson, André Görgens, Samir EL Andaloussi, Luca Brandt, Outi Tammisola, Erdinc Sezgin, Aman Russom\",\"doi\":\"10.1002/smll.202503369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoscale biological particles, such as lipoproteins (10–80 nm) or extracellular vesicles (30–200 nm), play pivotal roles in health and disease, including conditions like cardiovascular disorders and cancer. Their effective analysis is crucial for applications in diagnostics, quality control, and nanomedicine development. While elasto-inertial focusing offers a powerful method to manipulate particles without external fields, achieving consistent focusing of nanoparticles (<500 nm) has remained a challenge. In this study, elasto-inertial focusing of nanoparticles as small as 25 nm is experimentally demonstrated using straight high-aspect-ratio microchannels in a sheathless flow. Systematic investigations reveal the influence of channel width, particle size, viscoelastic concentration, and flow rate on focusing behavior. Additionally, through numerical simulations and experimental validation, insights are provided into particle migration dynamics and viscoelastic forces governing nanoparticle focusing. Finally, biological particles, including liposomes (90–140 nm), extracellular vesicles (100 nm), and lipoproteins (10–25 nm) is successfully focused, under optimized conditions, showcasing potential applications in medical diagnostics and targeted drug delivery. These findings mark a significant advancement toward size-based high-resolution particle separation, with implications for biomedicine and environmental sciences.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 33\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202503369\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503369\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503369","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sheathless Elasto-Inertial Focusing of Sub-25 Nm Particles in Straight Microchannels
Nanoscale biological particles, such as lipoproteins (10–80 nm) or extracellular vesicles (30–200 nm), play pivotal roles in health and disease, including conditions like cardiovascular disorders and cancer. Their effective analysis is crucial for applications in diagnostics, quality control, and nanomedicine development. While elasto-inertial focusing offers a powerful method to manipulate particles without external fields, achieving consistent focusing of nanoparticles (<500 nm) has remained a challenge. In this study, elasto-inertial focusing of nanoparticles as small as 25 nm is experimentally demonstrated using straight high-aspect-ratio microchannels in a sheathless flow. Systematic investigations reveal the influence of channel width, particle size, viscoelastic concentration, and flow rate on focusing behavior. Additionally, through numerical simulations and experimental validation, insights are provided into particle migration dynamics and viscoelastic forces governing nanoparticle focusing. Finally, biological particles, including liposomes (90–140 nm), extracellular vesicles (100 nm), and lipoproteins (10–25 nm) is successfully focused, under optimized conditions, showcasing potential applications in medical diagnostics and targeted drug delivery. These findings mark a significant advancement toward size-based high-resolution particle separation, with implications for biomedicine and environmental sciences.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.