Daojun Li, Yudong Wang, Yan Li, Wenli Wang, Chunfei Wang, Xiaoqing Wang, Wenqi Zhou, Yuqian Zhou, Xiaorong Lian, Tong Li, Yang Li, Xiaomin Zhang, Chunpeng Song, Zhubing Hu
{"title":"玉米ZmDLR2/BRU1参与DNA修复促进侧根原基萌发","authors":"Daojun Li, Yudong Wang, Yan Li, Wenli Wang, Chunfei Wang, Xiaoqing Wang, Wenqi Zhou, Yuqian Zhou, Xiaorong Lian, Tong Li, Yang Li, Xiaomin Zhang, Chunpeng Song, Zhubing Hu","doi":"10.1111/pce.70037","DOIUrl":null,"url":null,"abstract":"<p><p>Lateral roots (LRs), the primary component of the maize root system, are crucial for water and nutrient acquisition. Deciphering the molecular mechanisms underlying LR formation and development is therefore essential for improving maize yield and stress resilience. In this study, we characterised a mutant, defective in lateral root 2-1 (dlr2-1), which displays impaired LR development and compromised drought resistance. Phenotypic analysis and RNA-seq revealed defective cell proliferation in lateral root primordia (LRP) of dlr2-1, likely attributable to DNA damage. Accordingly, the dlr2-1 mutant exhibited an activated DNA damage response. Exogenous treatment of wild-type B73 plants with genotoxic agents recapitulated the dlr2-1 phenotype, suppressing LRP emergence and reducing mature LR numbers. Positional cloning and allelic analysis pinpointed a missense mutation in DLR2, causing a leucine-to-glutamine substitution at residue 1035 (ZmDLR2<sup>L1035Q</sup>) and accounting for the LR defects in dlr2-1. ZmDLR2 encodes a maize orthologue of Arabidopsis BRUSHY1 (BRU1), a key regulator of DNA damage repair during DNA replication. Comet assays demonstrated that dlr2-1 accumulates more severe DNA fragmentation than B73, as evidenced by an elevated tail moment, which was further aggravated under genotoxic stress. Moreover, ZmDLR2 mutation adversely affected plant height and kernel size in dlr2 mutants, leading to significant yield reduction. Collectively, our results establish that ZmDLR2 is indispensable for DNA repair and that its dysfunction activates the DNA damage response, ultimately inhibiting cell proliferation, disrupting LRP initiation and LR formation and compromising maize productivity.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maize ZmDLR2/BRU1 Is Required for Lateral Root Primordium Emergence by Participating in DNA Repair.\",\"authors\":\"Daojun Li, Yudong Wang, Yan Li, Wenli Wang, Chunfei Wang, Xiaoqing Wang, Wenqi Zhou, Yuqian Zhou, Xiaorong Lian, Tong Li, Yang Li, Xiaomin Zhang, Chunpeng Song, Zhubing Hu\",\"doi\":\"10.1111/pce.70037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lateral roots (LRs), the primary component of the maize root system, are crucial for water and nutrient acquisition. Deciphering the molecular mechanisms underlying LR formation and development is therefore essential for improving maize yield and stress resilience. In this study, we characterised a mutant, defective in lateral root 2-1 (dlr2-1), which displays impaired LR development and compromised drought resistance. Phenotypic analysis and RNA-seq revealed defective cell proliferation in lateral root primordia (LRP) of dlr2-1, likely attributable to DNA damage. Accordingly, the dlr2-1 mutant exhibited an activated DNA damage response. Exogenous treatment of wild-type B73 plants with genotoxic agents recapitulated the dlr2-1 phenotype, suppressing LRP emergence and reducing mature LR numbers. Positional cloning and allelic analysis pinpointed a missense mutation in DLR2, causing a leucine-to-glutamine substitution at residue 1035 (ZmDLR2<sup>L1035Q</sup>) and accounting for the LR defects in dlr2-1. ZmDLR2 encodes a maize orthologue of Arabidopsis BRUSHY1 (BRU1), a key regulator of DNA damage repair during DNA replication. Comet assays demonstrated that dlr2-1 accumulates more severe DNA fragmentation than B73, as evidenced by an elevated tail moment, which was further aggravated under genotoxic stress. Moreover, ZmDLR2 mutation adversely affected plant height and kernel size in dlr2 mutants, leading to significant yield reduction. Collectively, our results establish that ZmDLR2 is indispensable for DNA repair and that its dysfunction activates the DNA damage response, ultimately inhibiting cell proliferation, disrupting LRP initiation and LR formation and compromising maize productivity.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70037\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70037","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Maize ZmDLR2/BRU1 Is Required for Lateral Root Primordium Emergence by Participating in DNA Repair.
Lateral roots (LRs), the primary component of the maize root system, are crucial for water and nutrient acquisition. Deciphering the molecular mechanisms underlying LR formation and development is therefore essential for improving maize yield and stress resilience. In this study, we characterised a mutant, defective in lateral root 2-1 (dlr2-1), which displays impaired LR development and compromised drought resistance. Phenotypic analysis and RNA-seq revealed defective cell proliferation in lateral root primordia (LRP) of dlr2-1, likely attributable to DNA damage. Accordingly, the dlr2-1 mutant exhibited an activated DNA damage response. Exogenous treatment of wild-type B73 plants with genotoxic agents recapitulated the dlr2-1 phenotype, suppressing LRP emergence and reducing mature LR numbers. Positional cloning and allelic analysis pinpointed a missense mutation in DLR2, causing a leucine-to-glutamine substitution at residue 1035 (ZmDLR2L1035Q) and accounting for the LR defects in dlr2-1. ZmDLR2 encodes a maize orthologue of Arabidopsis BRUSHY1 (BRU1), a key regulator of DNA damage repair during DNA replication. Comet assays demonstrated that dlr2-1 accumulates more severe DNA fragmentation than B73, as evidenced by an elevated tail moment, which was further aggravated under genotoxic stress. Moreover, ZmDLR2 mutation adversely affected plant height and kernel size in dlr2 mutants, leading to significant yield reduction. Collectively, our results establish that ZmDLR2 is indispensable for DNA repair and that its dysfunction activates the DNA damage response, ultimately inhibiting cell proliferation, disrupting LRP initiation and LR formation and compromising maize productivity.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.