Ivana Drienovska, Jan Hendrik Illies, T Moritz Weber
{"title":"非典型氨基酸在体内的生物合成和直接掺入蛋白质。","authors":"Ivana Drienovska, Jan Hendrik Illies, T Moritz Weber","doi":"10.1002/cbic.202500282","DOIUrl":null,"url":null,"abstract":"<p><p>Autonomous cells are engineered biological systems capable of biosynthesising and directly incorporating non-canonical amino acids (ncAAs) into proteins. These systems have the potential to extend the applicability of the genetic code to enable large-scale fermentative production of proteins carrying ncAAs. This work evaluates approaches for the generation of autonomous and semi-autonomous cells. Semi-autonomous cells rely on the external addition of a precursor, which is enzymatically converted in vivo to an ncAA that is directly incorporated. In contrast, autonomous cells have a metabolic system that produces and directly incorporates an ncAA in vivo. Through a critical evaluation of the state of the art, the reader is provided with an opinion on the future development of the field.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500282"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vivo Biosynthesis and Direct Incorporation of Non-Canonical Amino Acids into Proteins.\",\"authors\":\"Ivana Drienovska, Jan Hendrik Illies, T Moritz Weber\",\"doi\":\"10.1002/cbic.202500282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autonomous cells are engineered biological systems capable of biosynthesising and directly incorporating non-canonical amino acids (ncAAs) into proteins. These systems have the potential to extend the applicability of the genetic code to enable large-scale fermentative production of proteins carrying ncAAs. This work evaluates approaches for the generation of autonomous and semi-autonomous cells. Semi-autonomous cells rely on the external addition of a precursor, which is enzymatically converted in vivo to an ncAA that is directly incorporated. In contrast, autonomous cells have a metabolic system that produces and directly incorporates an ncAA in vivo. Through a critical evaluation of the state of the art, the reader is provided with an opinion on the future development of the field.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e202500282\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202500282\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500282","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In Vivo Biosynthesis and Direct Incorporation of Non-Canonical Amino Acids into Proteins.
Autonomous cells are engineered biological systems capable of biosynthesising and directly incorporating non-canonical amino acids (ncAAs) into proteins. These systems have the potential to extend the applicability of the genetic code to enable large-scale fermentative production of proteins carrying ncAAs. This work evaluates approaches for the generation of autonomous and semi-autonomous cells. Semi-autonomous cells rely on the external addition of a precursor, which is enzymatically converted in vivo to an ncAA that is directly incorporated. In contrast, autonomous cells have a metabolic system that produces and directly incorporates an ncAA in vivo. Through a critical evaluation of the state of the art, the reader is provided with an opinion on the future development of the field.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).