稳定,高导电性,应变不敏感的超分子弹性体复合材料,可打印自修复软电子。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ahmed Albeltagi, Tiia Tyystälä, Mikko Nelo, Tuomo Siponkoski, Aldeliane M. da Silva, Mari Rocham, Jari Hannu, Heli Jantunen, Jari Juuti, Jarkko Tolvanen
{"title":"稳定,高导电性,应变不敏感的超分子弹性体复合材料,可打印自修复软电子。","authors":"Ahmed Albeltagi,&nbsp;Tiia Tyystälä,&nbsp;Mikko Nelo,&nbsp;Tuomo Siponkoski,&nbsp;Aldeliane M. da Silva,&nbsp;Mari Rocham,&nbsp;Jari Hannu,&nbsp;Heli Jantunen,&nbsp;Jari Juuti,&nbsp;Jarkko Tolvanen","doi":"10.1002/advs.202505011","DOIUrl":null,"url":null,"abstract":"<p>Stretchable and self-healing soft conductive materials are essential for soft electronics, robotics, wearables, and bioelectronics. However, achieving a single material that simultaneously offers high and stable conductivity, minimal resistance changes under extreme stretching, high-resolution universal printability, autonomous self-healing, and pressure-sensitive adhesive properties for direct bonding of surface-mountable components remains challenging. Here, a printable ink composed of liquid metal microparticles and carboxylic acid-functionalized carbon nanotubes, blended into a bimodal supramolecular elastomer matrix is introduced. After photothermal activation, the material is capable of reorganizing conductive pathways and achieves a high conductivity (&gt; 20000 S·cm<sup>−1</sup> under strain), exceptional strain insensitivity (<i>R/R<sub>0</sub></i> &lt; 3.95 up to 500%), and an elastic working range &gt;700%. The reversible oxygen-boron and hydrogen bonding enable both effective autonomous self-healing and direct assembly of self-healing hybrid electronic circuits and systems through self-adhesiveness. To showcase the high performance and functionality, a highly stretchable, self-healing, and waterproof 3 × 5 pixel display is fabricated.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 33","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505011","citationCount":"0","resultStr":"{\"title\":\"Stable, Highly Conductive, and Strain-Insensitive Supramolecular Elastomer Composite for Printable Self-Healing Soft Electronics\",\"authors\":\"Ahmed Albeltagi,&nbsp;Tiia Tyystälä,&nbsp;Mikko Nelo,&nbsp;Tuomo Siponkoski,&nbsp;Aldeliane M. da Silva,&nbsp;Mari Rocham,&nbsp;Jari Hannu,&nbsp;Heli Jantunen,&nbsp;Jari Juuti,&nbsp;Jarkko Tolvanen\",\"doi\":\"10.1002/advs.202505011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stretchable and self-healing soft conductive materials are essential for soft electronics, robotics, wearables, and bioelectronics. However, achieving a single material that simultaneously offers high and stable conductivity, minimal resistance changes under extreme stretching, high-resolution universal printability, autonomous self-healing, and pressure-sensitive adhesive properties for direct bonding of surface-mountable components remains challenging. Here, a printable ink composed of liquid metal microparticles and carboxylic acid-functionalized carbon nanotubes, blended into a bimodal supramolecular elastomer matrix is introduced. After photothermal activation, the material is capable of reorganizing conductive pathways and achieves a high conductivity (&gt; 20000 S·cm<sup>−1</sup> under strain), exceptional strain insensitivity (<i>R/R<sub>0</sub></i> &lt; 3.95 up to 500%), and an elastic working range &gt;700%. The reversible oxygen-boron and hydrogen bonding enable both effective autonomous self-healing and direct assembly of self-healing hybrid electronic circuits and systems through self-adhesiveness. To showcase the high performance and functionality, a highly stretchable, self-healing, and waterproof 3 × 5 pixel display is fabricated.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 33\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505011\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可拉伸和自修复的软导电材料对于软电子、机器人、可穿戴设备和生物电子学至关重要。然而,实现一种同时提供高而稳定的导电性、在极端拉伸下最小的电阻变化、高分辨率的通用印刷性、自主自修复和压敏粘合性能的单一材料,用于表面贴装组件的直接粘合,仍然具有挑战性。本文介绍了一种由液态金属微粒和羧酸功能化碳纳米管混合成双峰超分子弹性体基质的可打印油墨。光热活化后,材料具有重组导电途径的能力,具有高电导率(应变下> 20000 S·cm-1)、应变不敏感性(R/R0 < 3.95 ~ 500%)和弹性工作范围>700%。可逆的氧-硼和氢键通过自粘性实现了有效的自修复和自修复混合电子电路和系统的直接组装。为了展示高性能和功能,制作了一个高度可拉伸,自我修复和防水的3 × 5像素显示器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stable, Highly Conductive, and Strain-Insensitive Supramolecular Elastomer Composite for Printable Self-Healing Soft Electronics

Stable, Highly Conductive, and Strain-Insensitive Supramolecular Elastomer Composite for Printable Self-Healing Soft Electronics

Stretchable and self-healing soft conductive materials are essential for soft electronics, robotics, wearables, and bioelectronics. However, achieving a single material that simultaneously offers high and stable conductivity, minimal resistance changes under extreme stretching, high-resolution universal printability, autonomous self-healing, and pressure-sensitive adhesive properties for direct bonding of surface-mountable components remains challenging. Here, a printable ink composed of liquid metal microparticles and carboxylic acid-functionalized carbon nanotubes, blended into a bimodal supramolecular elastomer matrix is introduced. After photothermal activation, the material is capable of reorganizing conductive pathways and achieves a high conductivity (> 20000 S·cm−1 under strain), exceptional strain insensitivity (R/R0 < 3.95 up to 500%), and an elastic working range >700%. The reversible oxygen-boron and hydrogen bonding enable both effective autonomous self-healing and direct assembly of self-healing hybrid electronic circuits and systems through self-adhesiveness. To showcase the high performance and functionality, a highly stretchable, self-healing, and waterproof 3 × 5 pixel display is fabricated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信