Lucia G. Brunel , Chris M. Long , Fotis Christakopoulos , Betty Cai , Narelli de Paiva Narciso , Patrik K. Johansson , Diya Singhal , Neil J. Baugh , Daiyao Zhang , Annika Enejder , David Myung , Sarah C. Heilshorn
{"title":"用生物正交共价交联增强纤维胶原水凝胶。","authors":"Lucia G. Brunel , Chris M. Long , Fotis Christakopoulos , Betty Cai , Narelli de Paiva Narciso , Patrik K. Johansson , Diya Singhal , Neil J. Baugh , Daiyao Zhang , Annika Enejder , David Myung , Sarah C. Heilshorn","doi":"10.1021/acs.biomac.5c00398","DOIUrl":null,"url":null,"abstract":"<div><div>Bioorthogonal covalent crosslinking stabilizes collagen type I hydrogels, improving their structural integrity for tissue engineering applications with encapsulated living cells. The chemical modification required for crosslinking, however, interferes with the fibrillar nature of the collagen, leading instead to an amorphous network without fibers. We demonstrate an approach to perform bioconjugation chemistry on collagen with controlled localization such that the modified collagen retains its ability to self-assemble into a fibrillar network while also displaying functional groups for covalent crosslinking with bioorthogonal click chemistry. The collagen matrix is formed through a sequential crosslinking process, in which the modified collagen first physically assembles into fibers and then is covalently crosslinked. This approach preserves the fibrous architecture of the collagen, guiding the behavior of encapsulated human corneal mesenchymal stromal cells while also reinforcing fibers through covalent crosslinks, strengthening the stability of the cell-laden collagen hydrogel against cell-induced contraction and enzymatic degradation.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (245KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 7","pages":"Pages 4404-4418"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement of Fibrillar Collagen Hydrogels with Bioorthogonal Covalent Crosslinks\",\"authors\":\"Lucia G. Brunel , Chris M. Long , Fotis Christakopoulos , Betty Cai , Narelli de Paiva Narciso , Patrik K. Johansson , Diya Singhal , Neil J. Baugh , Daiyao Zhang , Annika Enejder , David Myung , Sarah C. Heilshorn\",\"doi\":\"10.1021/acs.biomac.5c00398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bioorthogonal covalent crosslinking stabilizes collagen type I hydrogels, improving their structural integrity for tissue engineering applications with encapsulated living cells. The chemical modification required for crosslinking, however, interferes with the fibrillar nature of the collagen, leading instead to an amorphous network without fibers. We demonstrate an approach to perform bioconjugation chemistry on collagen with controlled localization such that the modified collagen retains its ability to self-assemble into a fibrillar network while also displaying functional groups for covalent crosslinking with bioorthogonal click chemistry. The collagen matrix is formed through a sequential crosslinking process, in which the modified collagen first physically assembles into fibers and then is covalently crosslinked. This approach preserves the fibrous architecture of the collagen, guiding the behavior of encapsulated human corneal mesenchymal stromal cells while also reinforcing fibers through covalent crosslinks, strengthening the stability of the cell-laden collagen hydrogel against cell-induced contraction and enzymatic degradation.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (245KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 7\",\"pages\":\"Pages 4404-4418\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1525779725002909\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725002909","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Reinforcement of Fibrillar Collagen Hydrogels with Bioorthogonal Covalent Crosslinks
Bioorthogonal covalent crosslinking stabilizes collagen type I hydrogels, improving their structural integrity for tissue engineering applications with encapsulated living cells. The chemical modification required for crosslinking, however, interferes with the fibrillar nature of the collagen, leading instead to an amorphous network without fibers. We demonstrate an approach to perform bioconjugation chemistry on collagen with controlled localization such that the modified collagen retains its ability to self-assemble into a fibrillar network while also displaying functional groups for covalent crosslinking with bioorthogonal click chemistry. The collagen matrix is formed through a sequential crosslinking process, in which the modified collagen first physically assembles into fibers and then is covalently crosslinked. This approach preserves the fibrous architecture of the collagen, guiding the behavior of encapsulated human corneal mesenchymal stromal cells while also reinforcing fibers through covalent crosslinks, strengthening the stability of the cell-laden collagen hydrogel against cell-induced contraction and enzymatic degradation.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.