Rui Sherry Shen, Drew Parker, Andrew An Chen, Benjamin E. Yerys, Birkan Tunç, Timothy P. L. Roberts, Russell T. Shinohara, Ragini Verma
{"title":"大数据,小偏差:协调扩散核磁共振结构连接体以减轻数据集成中与站点相关的偏差","authors":"Rui Sherry Shen, Drew Parker, Andrew An Chen, Benjamin E. Yerys, Birkan Tunç, Timothy P. L. Roberts, Russell T. Shinohara, Ragini Verma","doi":"10.1002/hbm.70256","DOIUrl":null,"url":null,"abstract":"<p>Diffusion MRI-based structural connectomes are increasingly used to investigate brain connectivity changes associated with various disorders. However, small sample sizes in individual studies, along with highly heterogeneous disorder-related manifestations, underscore the need to pool datasets across multiple studies to be able to identify coherent and generalizable connectivity patterns linked to these disorders. Yet, combining datasets introduces site-related differences due to variations in scanner hardware or acquisition protocols. These differences highlight the necessity for statistical data harmonization to mitigate site-related effects on structural connectomes while preserving the biological information associated with participant demographics and the disorders. While several paradigms exist for harmonizing normally distributed neuroimaging measures, this paper represents the first effort to establish a harmonization framework specifically tailored for the structural connectome. We conduct a thorough investigation of various statistical harmonization methods, adapting them to accommodate the unique distributional characteristics and graph-based properties of structural connectomes. Through rigorous evaluation, we show that our MATCH algorithm, based on the gamma-distributed model, consistently outperforms existing approaches in modeling structural connectomes, enabling the effective removal of site-related biases in both edge-based and downstream graph analyses while preserving biological variability. Two real-world applications further highlight the utility of our harmonization framework in addressing challenges in multi-site structural connectome analysis. Specifically, harmonization with MATCH enhances the generalizability of connectome-based machine learning predictors to new datasets and increases statistical power for detecting group-level differences. Our work provides essential guidelines for harmonizing multi-site structural connectomes, paving the way for more robust discoveries through collaborative research in the era of team science and big data.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70256","citationCount":"0","resultStr":"{\"title\":\"Big Data, Small Bias: Harmonizing Diffusion MRI-Based Structural Connectomes to Mitigate Site-Related Bias in Data Integration\",\"authors\":\"Rui Sherry Shen, Drew Parker, Andrew An Chen, Benjamin E. Yerys, Birkan Tunç, Timothy P. L. Roberts, Russell T. Shinohara, Ragini Verma\",\"doi\":\"10.1002/hbm.70256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diffusion MRI-based structural connectomes are increasingly used to investigate brain connectivity changes associated with various disorders. However, small sample sizes in individual studies, along with highly heterogeneous disorder-related manifestations, underscore the need to pool datasets across multiple studies to be able to identify coherent and generalizable connectivity patterns linked to these disorders. Yet, combining datasets introduces site-related differences due to variations in scanner hardware or acquisition protocols. These differences highlight the necessity for statistical data harmonization to mitigate site-related effects on structural connectomes while preserving the biological information associated with participant demographics and the disorders. While several paradigms exist for harmonizing normally distributed neuroimaging measures, this paper represents the first effort to establish a harmonization framework specifically tailored for the structural connectome. We conduct a thorough investigation of various statistical harmonization methods, adapting them to accommodate the unique distributional characteristics and graph-based properties of structural connectomes. Through rigorous evaluation, we show that our MATCH algorithm, based on the gamma-distributed model, consistently outperforms existing approaches in modeling structural connectomes, enabling the effective removal of site-related biases in both edge-based and downstream graph analyses while preserving biological variability. Two real-world applications further highlight the utility of our harmonization framework in addressing challenges in multi-site structural connectome analysis. Specifically, harmonization with MATCH enhances the generalizability of connectome-based machine learning predictors to new datasets and increases statistical power for detecting group-level differences. Our work provides essential guidelines for harmonizing multi-site structural connectomes, paving the way for more robust discoveries through collaborative research in the era of team science and big data.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70256\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70256\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70256","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Big Data, Small Bias: Harmonizing Diffusion MRI-Based Structural Connectomes to Mitigate Site-Related Bias in Data Integration
Diffusion MRI-based structural connectomes are increasingly used to investigate brain connectivity changes associated with various disorders. However, small sample sizes in individual studies, along with highly heterogeneous disorder-related manifestations, underscore the need to pool datasets across multiple studies to be able to identify coherent and generalizable connectivity patterns linked to these disorders. Yet, combining datasets introduces site-related differences due to variations in scanner hardware or acquisition protocols. These differences highlight the necessity for statistical data harmonization to mitigate site-related effects on structural connectomes while preserving the biological information associated with participant demographics and the disorders. While several paradigms exist for harmonizing normally distributed neuroimaging measures, this paper represents the first effort to establish a harmonization framework specifically tailored for the structural connectome. We conduct a thorough investigation of various statistical harmonization methods, adapting them to accommodate the unique distributional characteristics and graph-based properties of structural connectomes. Through rigorous evaluation, we show that our MATCH algorithm, based on the gamma-distributed model, consistently outperforms existing approaches in modeling structural connectomes, enabling the effective removal of site-related biases in both edge-based and downstream graph analyses while preserving biological variability. Two real-world applications further highlight the utility of our harmonization framework in addressing challenges in multi-site structural connectome analysis. Specifically, harmonization with MATCH enhances the generalizability of connectome-based machine learning predictors to new datasets and increases statistical power for detecting group-level differences. Our work provides essential guidelines for harmonizing multi-site structural connectomes, paving the way for more robust discoveries through collaborative research in the era of team science and big data.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.