Tomáš Jordánek, Radek Mareček, Anna Pačínková, Lenka Andrýsková, Milan Brázdil, Klára Marečková
{"title":"加速表观遗传老化及其在青年成年期脑动力学和认知中的作用","authors":"Tomáš Jordánek, Radek Mareček, Anna Pačínková, Lenka Andrýsková, Milan Brázdil, Klára Marečková","doi":"10.1002/hbm.70261","DOIUrl":null,"url":null,"abstract":"<p>Accelerated epigenetic aging has been associated with changes in cognition. However, due to the lack of neuroimaging epigenetics studies, it is still unclear whether accelerated epigenetic. Aging in young adulthood might underlie the relationship between altered brain dynamics and cognitive functioning. We conducted neuroimaging epigenetics follow-up of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort in young adulthood and tested the possible mediatory role of accelerated epigenetic aging in the relationship between dynamic functional connectivity (DFC) and worse cognition. A total of 240 young adults (51% men; 28–30 years, all of European ancestry) participated in the neuroimaging epigenetics follow-up. Buccal swabs were collected to assess DNA methylation and calculate epigenetic aging using Horvath's epigenetic clock. Full-scale IQ was assessed using the Wechsler adult intelligence scale (WAIS). Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired using a 3T Siemens Prisma MRI scanner, and DFC was assessed using mixture factor analysis, revealing information about the coverage of different DFC states. In women (but not men), lower coverage of DFC state 4 and thus lower frequency of epochs with high connectivity within the default mode network and between default mode, fronto-parietal, and visual networks was associated with lower full-scale IQ (Adj<i>R</i><sup>2</sup> = 0.05, std. beta = 0.245, <i>p</i> = 0.008). This relationship was mediated by accelerated epigenetic aging (ab = 7.660, SE = 4.829, 95% CI [0.473, 19.264]). In women, accelerated epigenetic aging in young adulthood mediates the relationship between altered brain dynamics and cognitive functioning. Prevention of cognitive decline should target women already in young adulthood.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 10","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70261","citationCount":"0","resultStr":"{\"title\":\"Accelerated Epigenetic Aging and Its Role in Brain Dynamics and Cognition in Young Adulthood\",\"authors\":\"Tomáš Jordánek, Radek Mareček, Anna Pačínková, Lenka Andrýsková, Milan Brázdil, Klára Marečková\",\"doi\":\"10.1002/hbm.70261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accelerated epigenetic aging has been associated with changes in cognition. However, due to the lack of neuroimaging epigenetics studies, it is still unclear whether accelerated epigenetic. Aging in young adulthood might underlie the relationship between altered brain dynamics and cognitive functioning. We conducted neuroimaging epigenetics follow-up of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort in young adulthood and tested the possible mediatory role of accelerated epigenetic aging in the relationship between dynamic functional connectivity (DFC) and worse cognition. A total of 240 young adults (51% men; 28–30 years, all of European ancestry) participated in the neuroimaging epigenetics follow-up. Buccal swabs were collected to assess DNA methylation and calculate epigenetic aging using Horvath's epigenetic clock. Full-scale IQ was assessed using the Wechsler adult intelligence scale (WAIS). Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired using a 3T Siemens Prisma MRI scanner, and DFC was assessed using mixture factor analysis, revealing information about the coverage of different DFC states. In women (but not men), lower coverage of DFC state 4 and thus lower frequency of epochs with high connectivity within the default mode network and between default mode, fronto-parietal, and visual networks was associated with lower full-scale IQ (Adj<i>R</i><sup>2</sup> = 0.05, std. beta = 0.245, <i>p</i> = 0.008). This relationship was mediated by accelerated epigenetic aging (ab = 7.660, SE = 4.829, 95% CI [0.473, 19.264]). In women, accelerated epigenetic aging in young adulthood mediates the relationship between altered brain dynamics and cognitive functioning. Prevention of cognitive decline should target women already in young adulthood.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 10\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70261\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70261\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70261","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Accelerated Epigenetic Aging and Its Role in Brain Dynamics and Cognition in Young Adulthood
Accelerated epigenetic aging has been associated with changes in cognition. However, due to the lack of neuroimaging epigenetics studies, it is still unclear whether accelerated epigenetic. Aging in young adulthood might underlie the relationship between altered brain dynamics and cognitive functioning. We conducted neuroimaging epigenetics follow-up of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort in young adulthood and tested the possible mediatory role of accelerated epigenetic aging in the relationship between dynamic functional connectivity (DFC) and worse cognition. A total of 240 young adults (51% men; 28–30 years, all of European ancestry) participated in the neuroimaging epigenetics follow-up. Buccal swabs were collected to assess DNA methylation and calculate epigenetic aging using Horvath's epigenetic clock. Full-scale IQ was assessed using the Wechsler adult intelligence scale (WAIS). Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired using a 3T Siemens Prisma MRI scanner, and DFC was assessed using mixture factor analysis, revealing information about the coverage of different DFC states. In women (but not men), lower coverage of DFC state 4 and thus lower frequency of epochs with high connectivity within the default mode network and between default mode, fronto-parietal, and visual networks was associated with lower full-scale IQ (AdjR2 = 0.05, std. beta = 0.245, p = 0.008). This relationship was mediated by accelerated epigenetic aging (ab = 7.660, SE = 4.829, 95% CI [0.473, 19.264]). In women, accelerated epigenetic aging in young adulthood mediates the relationship between altered brain dynamics and cognitive functioning. Prevention of cognitive decline should target women already in young adulthood.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.