通过CAS镜头生成人工智能:算法优化,架构进步和自动化设计的综合概述

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chuan Zhang;You You;Naigang Wang;Jongsun Park;Li Zhang
{"title":"通过CAS镜头生成人工智能:算法优化,架构进步和自动化设计的综合概述","authors":"Chuan Zhang;You You;Naigang Wang;Jongsun Park;Li Zhang","doi":"10.1109/JETCAS.2025.3575272","DOIUrl":null,"url":null,"abstract":"Generative artificial intelligence (GenAI) has emerged as a pivotal focus in global innovation agendas, revealing transformative potential that extends beyond technological applications to reshape diverse societal domains. Given the fundamental dependency of GenAI deployment on circuits and systems (CAS), a co-evolutionary approach integrating both technological paradigms becomes imperative. This synergistic framework confronts three interrelated challenges: 1) developing deployment-ready GenAI algorithms, 2) engineering implementation-efficient CAS architectures, and 3) leveraging GenAI for autonomous CAS designs - each representing critical innovations vectors. Given the rapid advancement of GenAI-CAS technologies, a comprehensive synthesis has become an urgent priority across academia and industry. Consequently, this timely review systematically analyzes current advancements, provides integrative perspectives, and identifies emerging research trajectories. This review endeavors to serve both AI and CAS communities, thereby catalyzing an innovation feedback loop: GenAI-optimized CAS architectures in turn accelerate GenAI evolution through algorithm-hardware co-empowerment.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 2","pages":"149-185"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11024158","citationCount":"0","resultStr":"{\"title\":\"Generative AI Through CAS Lens: An Integrated Overview of Algorithmic Optimizations, Architectural Advances, and Automated Designs\",\"authors\":\"Chuan Zhang;You You;Naigang Wang;Jongsun Park;Li Zhang\",\"doi\":\"10.1109/JETCAS.2025.3575272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative artificial intelligence (GenAI) has emerged as a pivotal focus in global innovation agendas, revealing transformative potential that extends beyond technological applications to reshape diverse societal domains. Given the fundamental dependency of GenAI deployment on circuits and systems (CAS), a co-evolutionary approach integrating both technological paradigms becomes imperative. This synergistic framework confronts three interrelated challenges: 1) developing deployment-ready GenAI algorithms, 2) engineering implementation-efficient CAS architectures, and 3) leveraging GenAI for autonomous CAS designs - each representing critical innovations vectors. Given the rapid advancement of GenAI-CAS technologies, a comprehensive synthesis has become an urgent priority across academia and industry. Consequently, this timely review systematically analyzes current advancements, provides integrative perspectives, and identifies emerging research trajectories. This review endeavors to serve both AI and CAS communities, thereby catalyzing an innovation feedback loop: GenAI-optimized CAS architectures in turn accelerate GenAI evolution through algorithm-hardware co-empowerment.\",\"PeriodicalId\":48827,\"journal\":{\"name\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"volume\":\"15 2\",\"pages\":\"149-185\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11024158\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11024158/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11024158/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

生成式人工智能(GenAI)已成为全球创新议程的关键焦点,它揭示了超越技术应用、重塑不同社会领域的变革潜力。鉴于GenAI部署对电路和系统(CAS)的基本依赖,集成两种技术范式的共同进化方法变得势在必行。这种协同框架面临着三个相互关联的挑战:1)开发可部署的GenAI算法,2)工程实现高效的CAS架构,以及3)利用GenAI进行自主CAS设计-每个都代表着关键的创新向量。鉴于GenAI-CAS技术的快速发展,综合合成已成为学术界和工业界的当务之急。因此,这篇及时的评论系统地分析了当前的进展,提供了综合的观点,并确定了新兴的研究轨迹。本综述努力为人工智能和CAS社区服务,从而催化创新反馈循环:通过算法-硬件协同授权,优化了GenAI的CAS架构反过来加速了GenAI的进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative AI Through CAS Lens: An Integrated Overview of Algorithmic Optimizations, Architectural Advances, and Automated Designs
Generative artificial intelligence (GenAI) has emerged as a pivotal focus in global innovation agendas, revealing transformative potential that extends beyond technological applications to reshape diverse societal domains. Given the fundamental dependency of GenAI deployment on circuits and systems (CAS), a co-evolutionary approach integrating both technological paradigms becomes imperative. This synergistic framework confronts three interrelated challenges: 1) developing deployment-ready GenAI algorithms, 2) engineering implementation-efficient CAS architectures, and 3) leveraging GenAI for autonomous CAS designs - each representing critical innovations vectors. Given the rapid advancement of GenAI-CAS technologies, a comprehensive synthesis has become an urgent priority across academia and industry. Consequently, this timely review systematically analyzes current advancements, provides integrative perspectives, and identifies emerging research trajectories. This review endeavors to serve both AI and CAS communities, thereby catalyzing an innovation feedback loop: GenAI-optimized CAS architectures in turn accelerate GenAI evolution through algorithm-hardware co-empowerment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信