比特币波动率预测中的分解能力

IF 4.8 2区 经济学 Q1 BUSINESS, FINANCE
Prakash Raj, Koushik Bera, N. Selvaraju
{"title":"比特币波动率预测中的分解能力","authors":"Prakash Raj,&nbsp;Koushik Bera,&nbsp;N. Selvaraju","doi":"10.1016/j.pacfin.2025.102839","DOIUrl":null,"url":null,"abstract":"<div><div>This article aims to show the power of decomposition techniques in estimating Bitcoin returns volatility with a time series volatility model. The realized generalized autoregressive heteroscedasticity (RGARCH) model, employing high-frequency data in the form of realized measures, is integrated with empirical mode decomposition (EMD) and variational mode decomposition (VMD) to estimate volatility. The high fluctuations in Bitcoin prices suggest using jump-robust estimators. The superior forecasting accuracy of proposed models compared to RGARCH and GARCH models across various metrics underscores the utility of decomposition in the volatility modeling of Bitcoin returns. VMD reigns supreme over EMD as it preserves the estimators’ ranking. In particular, the RGARCH-VMD model estimated using jump-robust estimators, namely realized tri-power variation and realized bi-power variation, outperforms all competing models. Since the Chicago Mercantile Exchange officially offers Bitcoin options, the strong performance of our models can be valuable for option pricing and risk management.</div></div>","PeriodicalId":48074,"journal":{"name":"Pacific-Basin Finance Journal","volume":"93 ","pages":"Article 102839"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power of decomposition in volatility forecasting for Bitcoins\",\"authors\":\"Prakash Raj,&nbsp;Koushik Bera,&nbsp;N. Selvaraju\",\"doi\":\"10.1016/j.pacfin.2025.102839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article aims to show the power of decomposition techniques in estimating Bitcoin returns volatility with a time series volatility model. The realized generalized autoregressive heteroscedasticity (RGARCH) model, employing high-frequency data in the form of realized measures, is integrated with empirical mode decomposition (EMD) and variational mode decomposition (VMD) to estimate volatility. The high fluctuations in Bitcoin prices suggest using jump-robust estimators. The superior forecasting accuracy of proposed models compared to RGARCH and GARCH models across various metrics underscores the utility of decomposition in the volatility modeling of Bitcoin returns. VMD reigns supreme over EMD as it preserves the estimators’ ranking. In particular, the RGARCH-VMD model estimated using jump-robust estimators, namely realized tri-power variation and realized bi-power variation, outperforms all competing models. Since the Chicago Mercantile Exchange officially offers Bitcoin options, the strong performance of our models can be valuable for option pricing and risk management.</div></div>\",\"PeriodicalId\":48074,\"journal\":{\"name\":\"Pacific-Basin Finance Journal\",\"volume\":\"93 \",\"pages\":\"Article 102839\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific-Basin Finance Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927538X25001763\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific-Basin Finance Journal","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927538X25001763","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在展示分解技术在使用时间序列波动率模型估计比特币回报波动率方面的强大功能。利用已实现测度形式的高频数据,结合经验模态分解(EMD)和变分模态分解(VMD)估算波动率,建立了广义自回归异方差(RGARCH)模型。比特币价格的高波动建议使用跳跃稳健估计器。与RGARCH和GARCH模型相比,所提出的模型在各种指标上的预测精度更高,这突显了分解在比特币收益波动性建模中的实用性。VMD凌驾于EMD之上,因为它保留了评估者的排名。特别是,RGARCH-VMD模型使用跳变鲁棒估计器进行估计,即实现三功率变化和实现双功率变化,优于所有竞争模型。由于芝加哥商品交易所正式提供比特币期权,我们的模型的强大性能可以为期权定价和风险管理提供价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Power of decomposition in volatility forecasting for Bitcoins

Power of decomposition in volatility forecasting for Bitcoins
This article aims to show the power of decomposition techniques in estimating Bitcoin returns volatility with a time series volatility model. The realized generalized autoregressive heteroscedasticity (RGARCH) model, employing high-frequency data in the form of realized measures, is integrated with empirical mode decomposition (EMD) and variational mode decomposition (VMD) to estimate volatility. The high fluctuations in Bitcoin prices suggest using jump-robust estimators. The superior forecasting accuracy of proposed models compared to RGARCH and GARCH models across various metrics underscores the utility of decomposition in the volatility modeling of Bitcoin returns. VMD reigns supreme over EMD as it preserves the estimators’ ranking. In particular, the RGARCH-VMD model estimated using jump-robust estimators, namely realized tri-power variation and realized bi-power variation, outperforms all competing models. Since the Chicago Mercantile Exchange officially offers Bitcoin options, the strong performance of our models can be valuable for option pricing and risk management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pacific-Basin Finance Journal
Pacific-Basin Finance Journal BUSINESS, FINANCE-
CiteScore
6.80
自引率
6.50%
发文量
157
期刊介绍: The Pacific-Basin Finance Journal is aimed at providing a specialized forum for the publication of academic research on capital markets of the Asia-Pacific countries. Primary emphasis will be placed on the highest quality empirical and theoretical research in the following areas: • Market Micro-structure; • Investment and Portfolio Management; • Theories of Market Equilibrium; • Valuation of Financial and Real Assets; • Behavior of Asset Prices in Financial Sectors; • Normative Theory of Financial Management; • Capital Markets of Development; • Market Mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信