{"title":"解决灵长类动物进化中调控变异缺失的背景","authors":"Genevieve Housman , Audrey Arner , Amy Longtin , Christian Gagnon , Arun Durvasula , Amanda Lea","doi":"10.1016/j.gde.2025.102374","DOIUrl":null,"url":null,"abstract":"<div><div>In primates, loci associated with adaptive trait variation often fall in noncoding regions. Understanding the mechanisms linking these regulatory variants to fitness-relevant phenotypes remains challenging but can be addressed using functional genomic data. However, such data are rarely generated at scale in nonhuman primates. When they are, only select tissues, cell types, developmental stages, and cellular environments are typically considered, despite growing appreciation that adaptive variants often exhibit context-dependent effects. In this review, we (1) discuss why context-dependent regulatory loci might be especially relevant for understanding adaptive evolution in primates, (2) explore challenges and emerging solutions for mapping such context-dependent variation, and (3) discuss the scientific questions these data could address. Filling these gaps will provide critical insights into evolutionary processes, human disease, and regulatory adaptation.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"93 ","pages":"Article 102374"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing missing context in regulatory variation across primate evolution\",\"authors\":\"Genevieve Housman , Audrey Arner , Amy Longtin , Christian Gagnon , Arun Durvasula , Amanda Lea\",\"doi\":\"10.1016/j.gde.2025.102374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In primates, loci associated with adaptive trait variation often fall in noncoding regions. Understanding the mechanisms linking these regulatory variants to fitness-relevant phenotypes remains challenging but can be addressed using functional genomic data. However, such data are rarely generated at scale in nonhuman primates. When they are, only select tissues, cell types, developmental stages, and cellular environments are typically considered, despite growing appreciation that adaptive variants often exhibit context-dependent effects. In this review, we (1) discuss why context-dependent regulatory loci might be especially relevant for understanding adaptive evolution in primates, (2) explore challenges and emerging solutions for mapping such context-dependent variation, and (3) discuss the scientific questions these data could address. Filling these gaps will provide critical insights into evolutionary processes, human disease, and regulatory adaptation.</div></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":\"93 \",\"pages\":\"Article 102374\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X25000668\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X25000668","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Addressing missing context in regulatory variation across primate evolution
In primates, loci associated with adaptive trait variation often fall in noncoding regions. Understanding the mechanisms linking these regulatory variants to fitness-relevant phenotypes remains challenging but can be addressed using functional genomic data. However, such data are rarely generated at scale in nonhuman primates. When they are, only select tissues, cell types, developmental stages, and cellular environments are typically considered, despite growing appreciation that adaptive variants often exhibit context-dependent effects. In this review, we (1) discuss why context-dependent regulatory loci might be especially relevant for understanding adaptive evolution in primates, (2) explore challenges and emerging solutions for mapping such context-dependent variation, and (3) discuss the scientific questions these data could address. Filling these gaps will provide critical insights into evolutionary processes, human disease, and regulatory adaptation.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)