Zhiyan Zhang , Zhenyang Sun , Xianghui Guo , Ruipeng Guo , Xiaoliang Yang , Pengju Yang
{"title":"结合时空特征和稀疏注意力的Pt-Transformer神经网络短期多步风电预测模型","authors":"Zhiyan Zhang , Zhenyang Sun , Xianghui Guo , Ruipeng Guo , Xiaoliang Yang , Pengju Yang","doi":"10.1016/j.epsr.2025.111970","DOIUrl":null,"url":null,"abstract":"<div><div>The accuracy and stability of wind power prediction are crucial for grid dispatching. However, precise wind power prediction faces three major challenges: effective mitigating data noise, representing complex spatio-temporal features, and selecting an appropriate prediction model. To address these challenges, this paper proposes a new wind power prediction model called process temporal transformer (Pt-Transformer). Firstly, an exponential weighted moving average (EWMA) method is employed to filter the noise of original wind characteristics while maintaining data complexity. Secondly, a seasonal trend decomposition (STD) model combined with a temporal autoencoder (TAE) is implemented to efficiently extract complex spatio-temporal characteristics. Furthermore, a sparse attention mechanism combined with the Transformer architecture is introduced to effectively extract high-dimensional latent space representations. Finally, two case studies are conducted using data from a cluster of wind farms and a single wind farm in central China, and three models, namely Transformer, Prob-Transformer, and Pt-Transformer, are used for prediction. The results show that the Pt-Transformer model outperforms the other two models in prediction accuracy and stability, reflecting its excellent performance in short-term multi-step wind power generation prediction.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"248 ","pages":"Article 111970"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term multi-step wind power prediction model based on Pt-Transformer neural network integrating spatio-temporal feature and sparse attention\",\"authors\":\"Zhiyan Zhang , Zhenyang Sun , Xianghui Guo , Ruipeng Guo , Xiaoliang Yang , Pengju Yang\",\"doi\":\"10.1016/j.epsr.2025.111970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The accuracy and stability of wind power prediction are crucial for grid dispatching. However, precise wind power prediction faces three major challenges: effective mitigating data noise, representing complex spatio-temporal features, and selecting an appropriate prediction model. To address these challenges, this paper proposes a new wind power prediction model called process temporal transformer (Pt-Transformer). Firstly, an exponential weighted moving average (EWMA) method is employed to filter the noise of original wind characteristics while maintaining data complexity. Secondly, a seasonal trend decomposition (STD) model combined with a temporal autoencoder (TAE) is implemented to efficiently extract complex spatio-temporal characteristics. Furthermore, a sparse attention mechanism combined with the Transformer architecture is introduced to effectively extract high-dimensional latent space representations. Finally, two case studies are conducted using data from a cluster of wind farms and a single wind farm in central China, and three models, namely Transformer, Prob-Transformer, and Pt-Transformer, are used for prediction. The results show that the Pt-Transformer model outperforms the other two models in prediction accuracy and stability, reflecting its excellent performance in short-term multi-step wind power generation prediction.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"248 \",\"pages\":\"Article 111970\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779625005619\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779625005619","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Short-term multi-step wind power prediction model based on Pt-Transformer neural network integrating spatio-temporal feature and sparse attention
The accuracy and stability of wind power prediction are crucial for grid dispatching. However, precise wind power prediction faces three major challenges: effective mitigating data noise, representing complex spatio-temporal features, and selecting an appropriate prediction model. To address these challenges, this paper proposes a new wind power prediction model called process temporal transformer (Pt-Transformer). Firstly, an exponential weighted moving average (EWMA) method is employed to filter the noise of original wind characteristics while maintaining data complexity. Secondly, a seasonal trend decomposition (STD) model combined with a temporal autoencoder (TAE) is implemented to efficiently extract complex spatio-temporal characteristics. Furthermore, a sparse attention mechanism combined with the Transformer architecture is introduced to effectively extract high-dimensional latent space representations. Finally, two case studies are conducted using data from a cluster of wind farms and a single wind farm in central China, and three models, namely Transformer, Prob-Transformer, and Pt-Transformer, are used for prediction. The results show that the Pt-Transformer model outperforms the other two models in prediction accuracy and stability, reflecting its excellent performance in short-term multi-step wind power generation prediction.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.