四正丁基溴化铵对盐渍环境中水合物生长和稳定性的微观影响机制

IF 5.5 0 ENERGY & FUELS
Fangning Fan , Han Jia , Yihan Huang , Zhenghao Kou , Ruitong Xu , Haowen Yu , Yuanbo Wang , Xu Li , Bowen Wang , Zhe Wang , Yurong Zhao
{"title":"四正丁基溴化铵对盐渍环境中水合物生长和稳定性的微观影响机制","authors":"Fangning Fan ,&nbsp;Han Jia ,&nbsp;Yihan Huang ,&nbsp;Zhenghao Kou ,&nbsp;Ruitong Xu ,&nbsp;Haowen Yu ,&nbsp;Yuanbo Wang ,&nbsp;Xu Li ,&nbsp;Bowen Wang ,&nbsp;Zhe Wang ,&nbsp;Yurong Zhao","doi":"10.1016/j.jgsce.2025.205712","DOIUrl":null,"url":null,"abstract":"<div><div>Marine CO<sub>2</sub> sequestration in hydrate form offers a promising solution to mitigate the escalating greenhouse effect. Numerous experimental studies have proven the efficacy of TBAB as a hydrate promoter even in saline environment, while its underlying microscopic mechanism remains unclear. This study employs molecular dynamics simulation to investigate the effect of TBAB with varying concentrations on CO<sub>2</sub> hydrate crystal stability and growth in saline environment under different thermodynamic conditions. A comprehensive analysis of system state, molecular distribution, intermolecular interactions, and molecular mobility is conducted. It is found that additional TBAB reduces the mobility of CO<sub>2</sub>, Na<sup>+</sup> and Cl<sup>−</sup> ions near the hydrate crystal, thereby promoting hydrate crystal formation and limiting ionic attack on hydrate crystal. Meanwhile, the adsorption layer of TBA<sup>+</sup> ions at the hydrate crystal surface protects the hydrate crystal from attack by inorganic ions via electrostatic interactions. Furthermore, the adsorbed TBA<sup>+</sup> ions facilitate the formation of more stable semiclathrate hydrate. This study reveals a compelling microscopic mechanism for the promotion effect of TBAB on hydrate growth and stability in a saline environment, suggesting its potential for carbon sequestration and informing future additive design.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"142 ","pages":"Article 205712"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic influence mechanisms of tetra-n-butylammonium bromide on hydrate growth and stability in saline environment\",\"authors\":\"Fangning Fan ,&nbsp;Han Jia ,&nbsp;Yihan Huang ,&nbsp;Zhenghao Kou ,&nbsp;Ruitong Xu ,&nbsp;Haowen Yu ,&nbsp;Yuanbo Wang ,&nbsp;Xu Li ,&nbsp;Bowen Wang ,&nbsp;Zhe Wang ,&nbsp;Yurong Zhao\",\"doi\":\"10.1016/j.jgsce.2025.205712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Marine CO<sub>2</sub> sequestration in hydrate form offers a promising solution to mitigate the escalating greenhouse effect. Numerous experimental studies have proven the efficacy of TBAB as a hydrate promoter even in saline environment, while its underlying microscopic mechanism remains unclear. This study employs molecular dynamics simulation to investigate the effect of TBAB with varying concentrations on CO<sub>2</sub> hydrate crystal stability and growth in saline environment under different thermodynamic conditions. A comprehensive analysis of system state, molecular distribution, intermolecular interactions, and molecular mobility is conducted. It is found that additional TBAB reduces the mobility of CO<sub>2</sub>, Na<sup>+</sup> and Cl<sup>−</sup> ions near the hydrate crystal, thereby promoting hydrate crystal formation and limiting ionic attack on hydrate crystal. Meanwhile, the adsorption layer of TBA<sup>+</sup> ions at the hydrate crystal surface protects the hydrate crystal from attack by inorganic ions via electrostatic interactions. Furthermore, the adsorbed TBA<sup>+</sup> ions facilitate the formation of more stable semiclathrate hydrate. This study reveals a compelling microscopic mechanism for the promotion effect of TBAB on hydrate growth and stability in a saline environment, suggesting its potential for carbon sequestration and informing future additive design.</div></div>\",\"PeriodicalId\":100568,\"journal\":{\"name\":\"Gas Science and Engineering\",\"volume\":\"142 \",\"pages\":\"Article 205712\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gas Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949908925001761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925001761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

以水合物形式封存海洋二氧化碳为缓解不断升级的温室效应提供了一个有希望的解决方案。大量的实验研究已经证明TBAB在盐水环境中也有水合物促进剂的作用,但其潜在的微观机制尚不清楚。本研究采用分子动力学模拟研究了不同热力学条件下不同浓度的TBAB对CO2水合物晶体稳定性和生长的影响。对系统状态、分子分布、分子间相互作用和分子迁移率进行了综合分析。发现额外的TBAB降低了水合物晶体附近CO2、Na+和Cl−离子的迁移率,从而促进了水合物晶体的形成,限制了离子对水合物晶体的攻击。同时,水合物晶体表面的TBA+离子吸附层通过静电相互作用保护水合物晶体免受无机离子的攻击。此外,吸附的TBA+离子有助于形成更稳定的半盐水合物。该研究揭示了TBAB促进盐环境中水合物生长和稳定性的微观机制,表明其在固碳方面的潜力,并为未来的添加剂设计提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microscopic influence mechanisms of tetra-n-butylammonium bromide on hydrate growth and stability in saline environment

Microscopic influence mechanisms of tetra-n-butylammonium bromide on hydrate growth and stability in saline environment
Marine CO2 sequestration in hydrate form offers a promising solution to mitigate the escalating greenhouse effect. Numerous experimental studies have proven the efficacy of TBAB as a hydrate promoter even in saline environment, while its underlying microscopic mechanism remains unclear. This study employs molecular dynamics simulation to investigate the effect of TBAB with varying concentrations on CO2 hydrate crystal stability and growth in saline environment under different thermodynamic conditions. A comprehensive analysis of system state, molecular distribution, intermolecular interactions, and molecular mobility is conducted. It is found that additional TBAB reduces the mobility of CO2, Na+ and Cl ions near the hydrate crystal, thereby promoting hydrate crystal formation and limiting ionic attack on hydrate crystal. Meanwhile, the adsorption layer of TBA+ ions at the hydrate crystal surface protects the hydrate crystal from attack by inorganic ions via electrostatic interactions. Furthermore, the adsorbed TBA+ ions facilitate the formation of more stable semiclathrate hydrate. This study reveals a compelling microscopic mechanism for the promotion effect of TBAB on hydrate growth and stability in a saline environment, suggesting its potential for carbon sequestration and informing future additive design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信