连接基因组学与心脏病学临床实践

Kaveh Hosseini MD, MPH , Nazanin Anaraki MD, MPH , Parham Dastjerdi MD , Sina Kazemian MD , Mandana Hasanzad PhD , Mohamad Alkhouli MD, MBA , Mahboob Alam MD , Khurram Nasir MD, MPH , Jamal S. Rana MD, PhD , Ami B. Bhatt MD
{"title":"连接基因组学与心脏病学临床实践","authors":"Kaveh Hosseini MD, MPH ,&nbsp;Nazanin Anaraki MD, MPH ,&nbsp;Parham Dastjerdi MD ,&nbsp;Sina Kazemian MD ,&nbsp;Mandana Hasanzad PhD ,&nbsp;Mohamad Alkhouli MD, MBA ,&nbsp;Mahboob Alam MD ,&nbsp;Khurram Nasir MD, MPH ,&nbsp;Jamal S. Rana MD, PhD ,&nbsp;Ami B. Bhatt MD","doi":"10.1016/j.jacadv.2025.101803","DOIUrl":null,"url":null,"abstract":"<div><div>Despite advances in cardiovascular disease risk stratification, traditional risk prediction models often fail to identify high-risk individuals before adverse events occur, underscoring the need for more precise tools. Polygenic risk scores (PRS) quantify genetic susceptibility by aggregating genetic variants but face challenges in practice. This systematic review investigates how artificial intelligence (AI) and machine learning algorithms can optimize PRS (AI-optimized PRS) to improve cardiovascular disease prediction. Analyzing 13 studies, we found that AI-optimized PRS models enhance predictive accuracy by improving feature selection, handling high-dimensional data, and integrating diverse variables—including clinical risk factors, biomarkers, imaging, and combining multiple PRS. These models outperform nonoptimized PRS models, providing a more comprehensive understanding of individual risk profiles. Evidence suggests that AI-optimized PRS can better stratify patients and guide personalized prevention strategies. Future research is needed to explore sex differences, include diverse populations, integrate AI-optimized PRS into electronic health records, and assess cost-effectiveness.</div></div>","PeriodicalId":73527,"journal":{"name":"JACC advances","volume":"4 6","pages":"Article 101803"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Genomics to Cardiology Clinical Practice\",\"authors\":\"Kaveh Hosseini MD, MPH ,&nbsp;Nazanin Anaraki MD, MPH ,&nbsp;Parham Dastjerdi MD ,&nbsp;Sina Kazemian MD ,&nbsp;Mandana Hasanzad PhD ,&nbsp;Mohamad Alkhouli MD, MBA ,&nbsp;Mahboob Alam MD ,&nbsp;Khurram Nasir MD, MPH ,&nbsp;Jamal S. Rana MD, PhD ,&nbsp;Ami B. Bhatt MD\",\"doi\":\"10.1016/j.jacadv.2025.101803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite advances in cardiovascular disease risk stratification, traditional risk prediction models often fail to identify high-risk individuals before adverse events occur, underscoring the need for more precise tools. Polygenic risk scores (PRS) quantify genetic susceptibility by aggregating genetic variants but face challenges in practice. This systematic review investigates how artificial intelligence (AI) and machine learning algorithms can optimize PRS (AI-optimized PRS) to improve cardiovascular disease prediction. Analyzing 13 studies, we found that AI-optimized PRS models enhance predictive accuracy by improving feature selection, handling high-dimensional data, and integrating diverse variables—including clinical risk factors, biomarkers, imaging, and combining multiple PRS. These models outperform nonoptimized PRS models, providing a more comprehensive understanding of individual risk profiles. Evidence suggests that AI-optimized PRS can better stratify patients and guide personalized prevention strategies. Future research is needed to explore sex differences, include diverse populations, integrate AI-optimized PRS into electronic health records, and assess cost-effectiveness.</div></div>\",\"PeriodicalId\":73527,\"journal\":{\"name\":\"JACC advances\",\"volume\":\"4 6\",\"pages\":\"Article 101803\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACC advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772963X25002212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772963X25002212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管在心血管疾病风险分层方面取得了进展,但传统的风险预测模型往往无法在不良事件发生之前识别出高风险个体,这强调了对更精确工具的需求。多基因风险评分(PRS)通过对遗传变异的聚合来量化遗传易感性,但在实践中面临挑战。本系统综述探讨了人工智能(AI)和机器学习算法如何优化PRS (AI-optimized PRS)以改善心血管疾病预测。通过分析13项研究,我们发现人工智能优化的PRS模型通过改进特征选择、处理高维数据、整合多种变量(包括临床危险因素、生物标志物、成像和组合多个PRS)来提高预测准确性。这些模型优于非优化的PRS模型,提供了对个人风险概况的更全面的理解。有证据表明,人工智能优化的PRS可以更好地对患者进行分层,并指导个性化的预防策略。未来的研究需要探索性别差异,包括不同的人群,将人工智能优化的PRS整合到电子健康记录中,并评估成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging Genomics to Cardiology Clinical Practice
Despite advances in cardiovascular disease risk stratification, traditional risk prediction models often fail to identify high-risk individuals before adverse events occur, underscoring the need for more precise tools. Polygenic risk scores (PRS) quantify genetic susceptibility by aggregating genetic variants but face challenges in practice. This systematic review investigates how artificial intelligence (AI) and machine learning algorithms can optimize PRS (AI-optimized PRS) to improve cardiovascular disease prediction. Analyzing 13 studies, we found that AI-optimized PRS models enhance predictive accuracy by improving feature selection, handling high-dimensional data, and integrating diverse variables—including clinical risk factors, biomarkers, imaging, and combining multiple PRS. These models outperform nonoptimized PRS models, providing a more comprehensive understanding of individual risk profiles. Evidence suggests that AI-optimized PRS can better stratify patients and guide personalized prevention strategies. Future research is needed to explore sex differences, include diverse populations, integrate AI-optimized PRS into electronic health records, and assess cost-effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JACC advances
JACC advances Cardiology and Cardiovascular Medicine
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信