广义分段三次lisamadard系统的全局中心环和极限环

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Ting Chen, Jianwei Peng
{"title":"广义分段三次lisamadard系统的全局中心环和极限环","authors":"Ting Chen,&nbsp;Jianwei Peng","doi":"10.1016/j.nonrwa.2025.104452","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to investigate two classical problems related to global center conditions and bifurcation of small-amplitude limit cycles in piecewise Liénard systems of the form <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>y</mi><mo>−</mo><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are both piecewise cubic polynomials. The explicit global center conditions at the origin are derived from this piecewise Liénard system. Furthermore, utilizing Poincaré-Lyapunov theory, the existence of nine limit cycles (isolate periodic solutions) around the origin is proved. As recognized to now, it is a new lower bound of the maximum number of limit cycles for such Liénard systems.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104452"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global center and limit cycles in generalized piecewise cubic Liénard systems\",\"authors\":\"Ting Chen,&nbsp;Jianwei Peng\",\"doi\":\"10.1016/j.nonrwa.2025.104452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper aims to investigate two classical problems related to global center conditions and bifurcation of small-amplitude limit cycles in piecewise Liénard systems of the form <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>y</mi><mo>−</mo><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are both piecewise cubic polynomials. The explicit global center conditions at the origin are derived from this piecewise Liénard system. Furthermore, utilizing Poincaré-Lyapunov theory, the existence of nine limit cycles (isolate periodic solutions) around the origin is proved. As recognized to now, it is a new lower bound of the maximum number of limit cycles for such Liénard systems.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"87 \",\"pages\":\"Article 104452\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001385\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001385","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究形式为: =y−F(x), =−g(x)的分段li系统的全局中心条件和小振幅极限环分岔的两个经典问题,其中F(x)和g(x)都是分段三次多项式。在原点处的显式全局中心条件是由这个分段lisamadard系统导出的。进一步,利用poincar - lyapunov理论,证明了在原点周围存在9个极限环(孤立周期解)。这是目前公认的这类lisamadard系统最大极限环数的一个新的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global center and limit cycles in generalized piecewise cubic Liénard systems
This paper aims to investigate two classical problems related to global center conditions and bifurcation of small-amplitude limit cycles in piecewise Liénard systems of the form ẋ=yF(x), ẏ=g(x), where F(x) and g(x) are both piecewise cubic polynomials. The explicit global center conditions at the origin are derived from this piecewise Liénard system. Furthermore, utilizing Poincaré-Lyapunov theory, the existence of nine limit cycles (isolate periodic solutions) around the origin is proved. As recognized to now, it is a new lower bound of the maximum number of limit cycles for such Liénard systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信