聚合物-陶瓷离子交换在高导电性复合电解质中的关键作用

IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Amit Bhattacharya , Ji-young Ock , Tao Wang , James T. Bamford , Rachel A. Segalman , Sheng Dai , Alexei P. Sokolov , Xi Chelsea Chen , Raphaële J. Clément
{"title":"聚合物-陶瓷离子交换在高导电性复合电解质中的关键作用","authors":"Amit Bhattacharya ,&nbsp;Ji-young Ock ,&nbsp;Tao Wang ,&nbsp;James T. Bamford ,&nbsp;Rachel A. Segalman ,&nbsp;Sheng Dai ,&nbsp;Alexei P. Sokolov ,&nbsp;Xi Chelsea Chen ,&nbsp;Raphaële J. Clément","doi":"10.1016/j.ssi.2025.116938","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer-ceramic composites offer a path to enhance the transport and mechanical properties of solid electrolytes. However, an in-depth understanding of the extent and role of ion transport along and across polymer-ceramic interfaces in these systems is lacking. We have recently shown that Li-conducting Li<sub>0.11</sub>Na<sub>0.24</sub>K<sub>0.02</sub>La<sub>0.43</sub>TiO<sub>2.82</sub> (LMTO) nanorods can be prepared by a molten flux method, and the addition of 30–50 weight (wt.)% LMTO to a bis[(trifluoromethyl)sulfonyl]imide-vinyl ethylene carbonate-based single-ion conducting (SIC) polymer electrolyte leads to a two-fold enhancement in Li-ion conductivity, from 1.4 to 3.0 × 10<sup>−5</sup> S/cm at 30 °C. In the present study, we use NMR methods to identify the Li-ion transport pathways and determine the timescale of chemical exchange between the SIC polymer and LMTO ceramic components. Tracer exchange NMR indicates preferential transport through the polymer or polymer-interfacial regions, and exchange spectroscopy (EXSY) and a new isotope exchange method reveal negligible Li exchange between the SIC polymer and LMTO ceramic up to several days. Here, LMTO nanorods act as a passive filler. Our results further highlight that significant (e.g., 10- or 100-fold) conductivity enhancements in composite electrolytes can only be achieved 1) with ionically-conductive fillers, and 2) when both the ceramic and polymer components <em>actively</em> participate in long-range transport. For this, fast interfacial ion exchange is needed. This leads us to introduce a critical interfacial ion exchange time to evaluate whether a filler actively contributes to conduction in a composite electrolyte, and screen for promising polymer-ceramic pairings to accelerate the development of high conductivity solid electrolytes.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"428 ","pages":"Article 116938"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical role of polymer-ceramic ion exchange for high conductivity composite electrolytes\",\"authors\":\"Amit Bhattacharya ,&nbsp;Ji-young Ock ,&nbsp;Tao Wang ,&nbsp;James T. Bamford ,&nbsp;Rachel A. Segalman ,&nbsp;Sheng Dai ,&nbsp;Alexei P. Sokolov ,&nbsp;Xi Chelsea Chen ,&nbsp;Raphaële J. Clément\",\"doi\":\"10.1016/j.ssi.2025.116938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polymer-ceramic composites offer a path to enhance the transport and mechanical properties of solid electrolytes. However, an in-depth understanding of the extent and role of ion transport along and across polymer-ceramic interfaces in these systems is lacking. We have recently shown that Li-conducting Li<sub>0.11</sub>Na<sub>0.24</sub>K<sub>0.02</sub>La<sub>0.43</sub>TiO<sub>2.82</sub> (LMTO) nanorods can be prepared by a molten flux method, and the addition of 30–50 weight (wt.)% LMTO to a bis[(trifluoromethyl)sulfonyl]imide-vinyl ethylene carbonate-based single-ion conducting (SIC) polymer electrolyte leads to a two-fold enhancement in Li-ion conductivity, from 1.4 to 3.0 × 10<sup>−5</sup> S/cm at 30 °C. In the present study, we use NMR methods to identify the Li-ion transport pathways and determine the timescale of chemical exchange between the SIC polymer and LMTO ceramic components. Tracer exchange NMR indicates preferential transport through the polymer or polymer-interfacial regions, and exchange spectroscopy (EXSY) and a new isotope exchange method reveal negligible Li exchange between the SIC polymer and LMTO ceramic up to several days. Here, LMTO nanorods act as a passive filler. Our results further highlight that significant (e.g., 10- or 100-fold) conductivity enhancements in composite electrolytes can only be achieved 1) with ionically-conductive fillers, and 2) when both the ceramic and polymer components <em>actively</em> participate in long-range transport. For this, fast interfacial ion exchange is needed. This leads us to introduce a critical interfacial ion exchange time to evaluate whether a filler actively contributes to conduction in a composite electrolyte, and screen for promising polymer-ceramic pairings to accelerate the development of high conductivity solid electrolytes.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"428 \",\"pages\":\"Article 116938\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273825001572\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825001572","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚合物-陶瓷复合材料为提高固体电解质的传输和机械性能提供了一条途径。然而,缺乏对这些系统中离子沿聚合物-陶瓷界面传输的程度和作用的深入了解。我们最近的研究表明,锂导电的Li0.11Na0.24K0.02La0.43TiO2.82 (LMTO)纳米棒可以通过熔融通量法制备,并且在双[(三氟甲基)磺酸基]亚胺-乙烯基碳酸乙烯基单离子导电(SIC)聚合物电解质中添加30 - 50重量(wt.)%的LMTO可以使锂离子电导率提高两倍,在30°C下从1.4到3.0 × 10−5 S/cm。在本研究中,我们使用核磁共振方法鉴定了锂离子的传输途径,并确定了SIC聚合物和LMTO陶瓷组分之间化学交换的时间尺度。示踪剂交换核磁共振表明在聚合物或聚合物-界面区域优先传输,交换光谱(EXSY)和一种新的同位素交换方法表明,SIC聚合物和LMTO陶瓷之间的Li交换可以忽略不计,长达数天。在这里,LMTO纳米棒充当被动填充物。我们的研究结果进一步强调,复合电解质的电导率增强(例如10倍或100倍)只能通过1)离子导电填料实现,2)当陶瓷和聚合物组分都积极参与远程传输时。为此,需要快速的界面离子交换。这导致我们引入一个关键的界面离子交换时间来评估填料是否积极地促进复合电解质的传导,并筛选有前途的聚合物-陶瓷配对,以加速高导电性固体电解质的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical role of polymer-ceramic ion exchange for high conductivity composite electrolytes
Polymer-ceramic composites offer a path to enhance the transport and mechanical properties of solid electrolytes. However, an in-depth understanding of the extent and role of ion transport along and across polymer-ceramic interfaces in these systems is lacking. We have recently shown that Li-conducting Li0.11Na0.24K0.02La0.43TiO2.82 (LMTO) nanorods can be prepared by a molten flux method, and the addition of 30–50 weight (wt.)% LMTO to a bis[(trifluoromethyl)sulfonyl]imide-vinyl ethylene carbonate-based single-ion conducting (SIC) polymer electrolyte leads to a two-fold enhancement in Li-ion conductivity, from 1.4 to 3.0 × 10−5 S/cm at 30 °C. In the present study, we use NMR methods to identify the Li-ion transport pathways and determine the timescale of chemical exchange between the SIC polymer and LMTO ceramic components. Tracer exchange NMR indicates preferential transport through the polymer or polymer-interfacial regions, and exchange spectroscopy (EXSY) and a new isotope exchange method reveal negligible Li exchange between the SIC polymer and LMTO ceramic up to several days. Here, LMTO nanorods act as a passive filler. Our results further highlight that significant (e.g., 10- or 100-fold) conductivity enhancements in composite electrolytes can only be achieved 1) with ionically-conductive fillers, and 2) when both the ceramic and polymer components actively participate in long-range transport. For this, fast interfacial ion exchange is needed. This leads us to introduce a critical interfacial ion exchange time to evaluate whether a filler actively contributes to conduction in a composite electrolyte, and screen for promising polymer-ceramic pairings to accelerate the development of high conductivity solid electrolytes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信