内皮细胞损伤和一般功能反应的非自主川崎病模型动力学

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Ke Guo , Wanbiao Ma , Conghui Xu , Fuxiang Li
{"title":"内皮细胞损伤和一般功能反应的非自主川崎病模型动力学","authors":"Ke Guo ,&nbsp;Wanbiao Ma ,&nbsp;Conghui Xu ,&nbsp;Fuxiang Li","doi":"10.1016/j.aml.2025.109659","DOIUrl":null,"url":null,"abstract":"<div><div>Patients with Kawasaki disease (KD) are exposed to various environmental factors during the onset and treatment of the disease, which result in the parameters of the KD model not remaining constant but fluctuating over time. Consequently, this paper constructs and studies a non-autonomous KD model with endothelial cell injury and general functional responses. We first obtain some explicit estimates of the ultimate lower bounds of any positive solution of the model through some elaborate mathematical analytical approaches, from which we deduce the model is permanent if <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>&gt;</mo><mn>1</mn></mrow></math></span>. If the model is transformed into the autonomous case, then <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> is the basic reproduction number of the model. In addition, some sufficient conditions for inflammatory cytokines to be cleared are obtained.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109659"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a non-autonomous Kawasaki disease model with endothelial cell injury and general functional responses\",\"authors\":\"Ke Guo ,&nbsp;Wanbiao Ma ,&nbsp;Conghui Xu ,&nbsp;Fuxiang Li\",\"doi\":\"10.1016/j.aml.2025.109659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Patients with Kawasaki disease (KD) are exposed to various environmental factors during the onset and treatment of the disease, which result in the parameters of the KD model not remaining constant but fluctuating over time. Consequently, this paper constructs and studies a non-autonomous KD model with endothelial cell injury and general functional responses. We first obtain some explicit estimates of the ultimate lower bounds of any positive solution of the model through some elaborate mathematical analytical approaches, from which we deduce the model is permanent if <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>&gt;</mo><mn>1</mn></mrow></math></span>. If the model is transformed into the autonomous case, then <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> is the basic reproduction number of the model. In addition, some sufficient conditions for inflammatory cytokines to be cleared are obtained.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"171 \",\"pages\":\"Article 109659\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002095\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002095","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

川崎病(Kawasaki disease, KD)患者在发病和治疗过程中受到各种环境因素的影响,导致川崎病模型的参数不保持恒定,而是随时间波动。因此,本文构建并研究了内皮细胞损伤和一般功能反应的非自主KD模型。我们首先通过一些精细的数学分析方法得到了模型任意正解的最终下界的一些显式估计,并由此推导出模型在p>;1条件下是永久的。若将模型转化为自治情况,则Rp为模型的基本再现数。此外,还获得了炎性细胞因子被清除的一些充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of a non-autonomous Kawasaki disease model with endothelial cell injury and general functional responses
Patients with Kawasaki disease (KD) are exposed to various environmental factors during the onset and treatment of the disease, which result in the parameters of the KD model not remaining constant but fluctuating over time. Consequently, this paper constructs and studies a non-autonomous KD model with endothelial cell injury and general functional responses. We first obtain some explicit estimates of the ultimate lower bounds of any positive solution of the model through some elaborate mathematical analytical approaches, from which we deduce the model is permanent if Rp>1. If the model is transformed into the autonomous case, then Rp is the basic reproduction number of the model. In addition, some sufficient conditions for inflammatory cytokines to be cleared are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信