Jeremy B. Axworthy , Eileen H. Bates , Matt P. Grosser , Jacqueline L. Padilla-Gamiño
{"title":"污染对萨利希海重要生态和经济生物的影响","authors":"Jeremy B. Axworthy , Eileen H. Bates , Matt P. Grosser , Jacqueline L. Padilla-Gamiño","doi":"10.1016/j.marpolbul.2025.118322","DOIUrl":null,"url":null,"abstract":"<div><div>Marine pollution threatens ecosystems, biodiversity, and human health, impacting species fitness, disrupting food webs, and degrading essential habitats. This review examines the effects of marine pollution on key species in the Salish Sea, a vital ecosystem supporting diverse wildlife, including endangered species, and local economies reliant on fishing, aquaculture, and tourism. In total, we synthesized 116 studies including chemical pollution (78), biological pollution (15), marine debris (15), and sound pollution (8). Research on marine chemical pollution has primarily focused on pollutants in fish (41), followed by studies on birds (11), mammals (7), and bivalves (7), then invertebrates (2). Future investigations should broaden species coverage, assess various life stages, and evaluate the impact of climate change on pollutant accumulation. Biological pollution, driven mainly by intentionally introduced species like farmed shellfish and salmon, threatens native species and can spread pathogens. There is a pressing need for research on the effects of fecal-borne pathogens on marine organisms and the influence of seagrass beds, fish farms, and sewage outfalls on pathogen dynamics. Marine debris, especially derelict fishing gear, negatively impacts local organisms, while the effects of tire reefs and microplastics remain poorly understood. Research should integrate laboratory and field assessments to analyze microplastic ingestion and improve detection technologies to inform conservation efforts. Noise pollution research has focused on marine mammals like killer whales, highlighting how sound pollution disrupts communication and behavior, which can indirectly alter food webs and community dynamics. Future studies should also encompass other marine species, including fish and invertebrates. Understanding pollution impacts is crucial for developing effective mitigation strategies, protecting marine life, and ensuring sustainable ocean resource management for future generations.</div></div>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"219 ","pages":"Article 118322"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of pollution on ecologically and economically important organisms of the Salish Sea\",\"authors\":\"Jeremy B. Axworthy , Eileen H. Bates , Matt P. Grosser , Jacqueline L. Padilla-Gamiño\",\"doi\":\"10.1016/j.marpolbul.2025.118322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Marine pollution threatens ecosystems, biodiversity, and human health, impacting species fitness, disrupting food webs, and degrading essential habitats. This review examines the effects of marine pollution on key species in the Salish Sea, a vital ecosystem supporting diverse wildlife, including endangered species, and local economies reliant on fishing, aquaculture, and tourism. In total, we synthesized 116 studies including chemical pollution (78), biological pollution (15), marine debris (15), and sound pollution (8). Research on marine chemical pollution has primarily focused on pollutants in fish (41), followed by studies on birds (11), mammals (7), and bivalves (7), then invertebrates (2). Future investigations should broaden species coverage, assess various life stages, and evaluate the impact of climate change on pollutant accumulation. Biological pollution, driven mainly by intentionally introduced species like farmed shellfish and salmon, threatens native species and can spread pathogens. There is a pressing need for research on the effects of fecal-borne pathogens on marine organisms and the influence of seagrass beds, fish farms, and sewage outfalls on pathogen dynamics. Marine debris, especially derelict fishing gear, negatively impacts local organisms, while the effects of tire reefs and microplastics remain poorly understood. Research should integrate laboratory and field assessments to analyze microplastic ingestion and improve detection technologies to inform conservation efforts. Noise pollution research has focused on marine mammals like killer whales, highlighting how sound pollution disrupts communication and behavior, which can indirectly alter food webs and community dynamics. Future studies should also encompass other marine species, including fish and invertebrates. Understanding pollution impacts is crucial for developing effective mitigation strategies, protecting marine life, and ensuring sustainable ocean resource management for future generations.</div></div>\",\"PeriodicalId\":18215,\"journal\":{\"name\":\"Marine pollution bulletin\",\"volume\":\"219 \",\"pages\":\"Article 118322\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine pollution bulletin\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025326X25007970\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025326X25007970","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effects of pollution on ecologically and economically important organisms of the Salish Sea
Marine pollution threatens ecosystems, biodiversity, and human health, impacting species fitness, disrupting food webs, and degrading essential habitats. This review examines the effects of marine pollution on key species in the Salish Sea, a vital ecosystem supporting diverse wildlife, including endangered species, and local economies reliant on fishing, aquaculture, and tourism. In total, we synthesized 116 studies including chemical pollution (78), biological pollution (15), marine debris (15), and sound pollution (8). Research on marine chemical pollution has primarily focused on pollutants in fish (41), followed by studies on birds (11), mammals (7), and bivalves (7), then invertebrates (2). Future investigations should broaden species coverage, assess various life stages, and evaluate the impact of climate change on pollutant accumulation. Biological pollution, driven mainly by intentionally introduced species like farmed shellfish and salmon, threatens native species and can spread pathogens. There is a pressing need for research on the effects of fecal-borne pathogens on marine organisms and the influence of seagrass beds, fish farms, and sewage outfalls on pathogen dynamics. Marine debris, especially derelict fishing gear, negatively impacts local organisms, while the effects of tire reefs and microplastics remain poorly understood. Research should integrate laboratory and field assessments to analyze microplastic ingestion and improve detection technologies to inform conservation efforts. Noise pollution research has focused on marine mammals like killer whales, highlighting how sound pollution disrupts communication and behavior, which can indirectly alter food webs and community dynamics. Future studies should also encompass other marine species, including fish and invertebrates. Understanding pollution impacts is crucial for developing effective mitigation strategies, protecting marine life, and ensuring sustainable ocean resource management for future generations.
期刊介绍:
Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.