{"title":"槲皮素3,4′-二甲醚与微管蛋白配合物的结构为药物设计提供了理论依据","authors":"Yang Su , Wei Yan , Jianhong Yang , Falong Yang","doi":"10.1016/j.bbrc.2025.152245","DOIUrl":null,"url":null,"abstract":"<div><div>Microtubules, composed of αβ-tubulin heterodimers, serve as key targets for anticancer therapeutics due to their critical role in cell division. Numerous compounds have been discovered to interact with tubulin and disrupt microtubule dynamics, particularly those targeting the colchicine-binding domain. Certain flavones, for instance, have demonstrated the ability to bind to this site and suppress microtubule polymerization. Despite their potential, progress in developing flavone-based drugs has been limited by insufficient structural data on tubulin-ligand complexes. Here, we present the high-resolution (1.92 Å) crystal structure of tubulin in complex with a flavone derivative, quercetin 3,4′-dimethyl ether (QU34), elucidating the specific molecular interactions at atomic detail. By analyzing this structure alongside other colchicine-site inhibitors, we clarify prior structure-activity relationship (SAR) findings and offer a framework for designing optimized flavone analogs targeting this site.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"777 ","pages":"Article 152245"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of quercetin 3,4′-dimethyl ether in complex with tubulin provides a rationale for drug design\",\"authors\":\"Yang Su , Wei Yan , Jianhong Yang , Falong Yang\",\"doi\":\"10.1016/j.bbrc.2025.152245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microtubules, composed of αβ-tubulin heterodimers, serve as key targets for anticancer therapeutics due to their critical role in cell division. Numerous compounds have been discovered to interact with tubulin and disrupt microtubule dynamics, particularly those targeting the colchicine-binding domain. Certain flavones, for instance, have demonstrated the ability to bind to this site and suppress microtubule polymerization. Despite their potential, progress in developing flavone-based drugs has been limited by insufficient structural data on tubulin-ligand complexes. Here, we present the high-resolution (1.92 Å) crystal structure of tubulin in complex with a flavone derivative, quercetin 3,4′-dimethyl ether (QU34), elucidating the specific molecular interactions at atomic detail. By analyzing this structure alongside other colchicine-site inhibitors, we clarify prior structure-activity relationship (SAR) findings and offer a framework for designing optimized flavone analogs targeting this site.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"777 \",\"pages\":\"Article 152245\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X2500960X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X2500960X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structure of quercetin 3,4′-dimethyl ether in complex with tubulin provides a rationale for drug design
Microtubules, composed of αβ-tubulin heterodimers, serve as key targets for anticancer therapeutics due to their critical role in cell division. Numerous compounds have been discovered to interact with tubulin and disrupt microtubule dynamics, particularly those targeting the colchicine-binding domain. Certain flavones, for instance, have demonstrated the ability to bind to this site and suppress microtubule polymerization. Despite their potential, progress in developing flavone-based drugs has been limited by insufficient structural data on tubulin-ligand complexes. Here, we present the high-resolution (1.92 Å) crystal structure of tubulin in complex with a flavone derivative, quercetin 3,4′-dimethyl ether (QU34), elucidating the specific molecular interactions at atomic detail. By analyzing this structure alongside other colchicine-site inhibitors, we clarify prior structure-activity relationship (SAR) findings and offer a framework for designing optimized flavone analogs targeting this site.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics