{"title":"断层摩擦的滑移率、状态、温度和正应力依赖性","authors":"Sylvain Barbot","doi":"10.1016/j.eqs.2025.03.005","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanics of slow-slip events and earthquakes is controlled by the constitutive behavior of rocks in active fault zones, which is sensitive to many factors encompassing lithology, temperature, confining and pore-fluid pressure, and slip-rate, among others. Understanding the frictional properties of faults is crucial to predicting many aspects of the seismic cycle, from the source characteristics and recurrence patterns of earthquakes to the mechanics of remote triggering. Here, we describe a constitutive model that explains the slip-rate-, state-, temperature-, and normal-stress-dependence of fault friction for a wide variety of rock types, explaining the evolution of frictional stability under various barometric and hydrothermal conditions relevant to natural and induced seismicity, encompassing the brittle-ductile transition. The frictional strength is controlled by the area of contact junctions that form along a rough interface or by grain-to-grain contact in fault gouge and follows a nonlinear function of normal stress. The physical model explains the direct and evolutionary effects following perturbations in temperature, normal stress, and slip-rate, and the dependence of the frictional parameters on ambient physical conditions. The competition among healing and deformation mechanisms explains the dependence of fault stability on temperature, slip-rate, and effective normal stress for a wide range of rocks. The brittle-to-flow transition at the bottom of the seismogenic zone is caused by the thermobaric activation of semi-brittle deformation mechanisms. The model unifies and extends previous formulations, providing a single framework to explain rock deformation in Earth’s brittle and ductile layers.</div></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"38 4","pages":"Pages 304-338"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The slip-rate, state-, temperature-, and normal-stress-dependence of fault friction\",\"authors\":\"Sylvain Barbot\",\"doi\":\"10.1016/j.eqs.2025.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanics of slow-slip events and earthquakes is controlled by the constitutive behavior of rocks in active fault zones, which is sensitive to many factors encompassing lithology, temperature, confining and pore-fluid pressure, and slip-rate, among others. Understanding the frictional properties of faults is crucial to predicting many aspects of the seismic cycle, from the source characteristics and recurrence patterns of earthquakes to the mechanics of remote triggering. Here, we describe a constitutive model that explains the slip-rate-, state-, temperature-, and normal-stress-dependence of fault friction for a wide variety of rock types, explaining the evolution of frictional stability under various barometric and hydrothermal conditions relevant to natural and induced seismicity, encompassing the brittle-ductile transition. The frictional strength is controlled by the area of contact junctions that form along a rough interface or by grain-to-grain contact in fault gouge and follows a nonlinear function of normal stress. The physical model explains the direct and evolutionary effects following perturbations in temperature, normal stress, and slip-rate, and the dependence of the frictional parameters on ambient physical conditions. The competition among healing and deformation mechanisms explains the dependence of fault stability on temperature, slip-rate, and effective normal stress for a wide range of rocks. The brittle-to-flow transition at the bottom of the seismogenic zone is caused by the thermobaric activation of semi-brittle deformation mechanisms. The model unifies and extends previous formulations, providing a single framework to explain rock deformation in Earth’s brittle and ductile layers.</div></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"38 4\",\"pages\":\"Pages 304-338\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451925000230\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451925000230","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
The slip-rate, state-, temperature-, and normal-stress-dependence of fault friction
The mechanics of slow-slip events and earthquakes is controlled by the constitutive behavior of rocks in active fault zones, which is sensitive to many factors encompassing lithology, temperature, confining and pore-fluid pressure, and slip-rate, among others. Understanding the frictional properties of faults is crucial to predicting many aspects of the seismic cycle, from the source characteristics and recurrence patterns of earthquakes to the mechanics of remote triggering. Here, we describe a constitutive model that explains the slip-rate-, state-, temperature-, and normal-stress-dependence of fault friction for a wide variety of rock types, explaining the evolution of frictional stability under various barometric and hydrothermal conditions relevant to natural and induced seismicity, encompassing the brittle-ductile transition. The frictional strength is controlled by the area of contact junctions that form along a rough interface or by grain-to-grain contact in fault gouge and follows a nonlinear function of normal stress. The physical model explains the direct and evolutionary effects following perturbations in temperature, normal stress, and slip-rate, and the dependence of the frictional parameters on ambient physical conditions. The competition among healing and deformation mechanisms explains the dependence of fault stability on temperature, slip-rate, and effective normal stress for a wide range of rocks. The brittle-to-flow transition at the bottom of the seismogenic zone is caused by the thermobaric activation of semi-brittle deformation mechanisms. The model unifies and extends previous formulations, providing a single framework to explain rock deformation in Earth’s brittle and ductile layers.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.