Qingshan Fan, Jie Bai, Ting Jiao, Zelong Zhao, Fujiang Hou
{"title":"青藏高原生态系统抗生素耐药基因的循环传递网络与反向贡献模式","authors":"Qingshan Fan, Jie Bai, Ting Jiao, Zelong Zhao, Fujiang Hou","doi":"10.1016/j.jhazmat.2025.139054","DOIUrl":null,"url":null,"abstract":"The dissemination of antibiotic resistance genes (ARGs) poses a major global public health challenge, yet transmission mechanisms within extreme ecosystems are poorly understood. Using metagenomics and metagenome-assembled genome (MAG) analysis, we investigated ARG composition, risk, and pathways across a complete Qinghai-Tibet Plateau food chain (soil, earthworm, herbage, yak, pika, snowfinch, herdsman). Contrary to conventional theory, ARG assemblages correlated negatively with microbial diversity. Our MAG-centric approach provided direct evidence that Horizontal Gene Transfer (HGT), including striking bacteria-archaea cross-domain transfer of 18 ARGs, predominates ARG dissemination, with specialized ‘ARG reservoir’ host phyla (e.g., Pseudomonadota) decoupling ARG functional diversity from overall microbial community structure. Earthworms function as ‘ARG bioamplifiers’, enriching 79.81% of soil ARGs and contributing 49.43% to herbage. Crucially, apex consumers (snowfinches, herdsmen) are not merely recipients; their feces drive a significant ‘reverse contribution’ of high-risk ARGs back into the ecosystem, establishing a complete circular ARG feedback network. Herdsman feces contained all Rank I-IV high-risk ARGs, while snowfinch feces held Rank II/IV, highlighting human activities’ impact on escalating ARG risks in this extreme setting. These findings, particularly the novel HGT mechanisms and host specialization insights, challenge the traditional unidirectional transmission model, presenting a new paradigm for managing antibiotic resistance risks in extreme ecosystems within the One Health framework.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"17 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circular Transmission Network and Reverse Contribution Pattern of Antibiotic Resistance Genes in the Qinghai-Tibet Plateau Ecosystem\",\"authors\":\"Qingshan Fan, Jie Bai, Ting Jiao, Zelong Zhao, Fujiang Hou\",\"doi\":\"10.1016/j.jhazmat.2025.139054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dissemination of antibiotic resistance genes (ARGs) poses a major global public health challenge, yet transmission mechanisms within extreme ecosystems are poorly understood. Using metagenomics and metagenome-assembled genome (MAG) analysis, we investigated ARG composition, risk, and pathways across a complete Qinghai-Tibet Plateau food chain (soil, earthworm, herbage, yak, pika, snowfinch, herdsman). Contrary to conventional theory, ARG assemblages correlated negatively with microbial diversity. Our MAG-centric approach provided direct evidence that Horizontal Gene Transfer (HGT), including striking bacteria-archaea cross-domain transfer of 18 ARGs, predominates ARG dissemination, with specialized ‘ARG reservoir’ host phyla (e.g., Pseudomonadota) decoupling ARG functional diversity from overall microbial community structure. Earthworms function as ‘ARG bioamplifiers’, enriching 79.81% of soil ARGs and contributing 49.43% to herbage. Crucially, apex consumers (snowfinches, herdsmen) are not merely recipients; their feces drive a significant ‘reverse contribution’ of high-risk ARGs back into the ecosystem, establishing a complete circular ARG feedback network. Herdsman feces contained all Rank I-IV high-risk ARGs, while snowfinch feces held Rank II/IV, highlighting human activities’ impact on escalating ARG risks in this extreme setting. These findings, particularly the novel HGT mechanisms and host specialization insights, challenge the traditional unidirectional transmission model, presenting a new paradigm for managing antibiotic resistance risks in extreme ecosystems within the One Health framework.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.139054\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.139054","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Circular Transmission Network and Reverse Contribution Pattern of Antibiotic Resistance Genes in the Qinghai-Tibet Plateau Ecosystem
The dissemination of antibiotic resistance genes (ARGs) poses a major global public health challenge, yet transmission mechanisms within extreme ecosystems are poorly understood. Using metagenomics and metagenome-assembled genome (MAG) analysis, we investigated ARG composition, risk, and pathways across a complete Qinghai-Tibet Plateau food chain (soil, earthworm, herbage, yak, pika, snowfinch, herdsman). Contrary to conventional theory, ARG assemblages correlated negatively with microbial diversity. Our MAG-centric approach provided direct evidence that Horizontal Gene Transfer (HGT), including striking bacteria-archaea cross-domain transfer of 18 ARGs, predominates ARG dissemination, with specialized ‘ARG reservoir’ host phyla (e.g., Pseudomonadota) decoupling ARG functional diversity from overall microbial community structure. Earthworms function as ‘ARG bioamplifiers’, enriching 79.81% of soil ARGs and contributing 49.43% to herbage. Crucially, apex consumers (snowfinches, herdsmen) are not merely recipients; their feces drive a significant ‘reverse contribution’ of high-risk ARGs back into the ecosystem, establishing a complete circular ARG feedback network. Herdsman feces contained all Rank I-IV high-risk ARGs, while snowfinch feces held Rank II/IV, highlighting human activities’ impact on escalating ARG risks in this extreme setting. These findings, particularly the novel HGT mechanisms and host specialization insights, challenge the traditional unidirectional transmission model, presenting a new paradigm for managing antibiotic resistance risks in extreme ecosystems within the One Health framework.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.