金属半导体1T-, 2H - ta2b MBene/Janus MoSSe异质结构的电子性质和界面工程

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-06-25 DOI:10.1039/d5nr01589h
Pham T. Truong, Nguyen N. Hieu, Nguyen V. Hieu, Nguyen Cuong, Linh P.T. Tran, Huynh V. Phuc, Chuong V. Nguyen
{"title":"金属半导体1T-, 2H - ta2b MBene/Janus MoSSe异质结构的电子性质和界面工程","authors":"Pham T. Truong, Nguyen N. Hieu, Nguyen V. Hieu, Nguyen Cuong, Linh P.T. Tran, Huynh V. Phuc, Chuong V. Nguyen","doi":"10.1039/d5nr01589h","DOIUrl":null,"url":null,"abstract":"Metal-semiconductor heterostructures are pivotal in modern electronics, offering a crucial interface that governs carrier transport and significantly impacts device performance and functionality. In this study, we systematically investigate the structural, electronic, mechanical, and contact properties of the 1T- and 2H-type Ta2B/MoSSe heterostructures using first-principles calculations. Our results confirm that both heterostructures are energetically, dynamically, and mechanically stable, with the Ta2B and MoSSe layers held together by van der Waals (vdW) forces, ensuring stability and potential exfoliation in future experiments. The Ta2B/MoSSe heterostructures exhibit exceptional mechanical robustness, making them highly suitable for integration into solid-state devices. Furthermore, all stacking configurations of the 1T(2H)-Ta2B/MoSSe heterostructures form n-type Schottky contacts, which can be effectively tuned by altering the stacking arrangements. Our findings indicate that, regardless of whether the metallic Ta2B layer is stacked on the S or Se side of the MoSSe monolayer, electron conduction dominates charge transport in the heterostructures. This inherent n-type contact formation is advantageous for applications requiring efficient electron transport, such as high-speed electronics and optoelectronic devices. Notably, the Ta2B/MoSSe heterostructures demonstrate low contact resistance, making them promising candidates for next-generation electronic devices. These findings provide critical insights into the fundamental properties of Ta2B/MoSSe heterostructures, underscoring their potential for next-generation electronic devices.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"17 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic Properties and Interfacial Engineering of metal-semiconductor 1T-, 2H -Ta2B MBene/Janus MoSSe Heterostructures\",\"authors\":\"Pham T. Truong, Nguyen N. Hieu, Nguyen V. Hieu, Nguyen Cuong, Linh P.T. Tran, Huynh V. Phuc, Chuong V. Nguyen\",\"doi\":\"10.1039/d5nr01589h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-semiconductor heterostructures are pivotal in modern electronics, offering a crucial interface that governs carrier transport and significantly impacts device performance and functionality. In this study, we systematically investigate the structural, electronic, mechanical, and contact properties of the 1T- and 2H-type Ta2B/MoSSe heterostructures using first-principles calculations. Our results confirm that both heterostructures are energetically, dynamically, and mechanically stable, with the Ta2B and MoSSe layers held together by van der Waals (vdW) forces, ensuring stability and potential exfoliation in future experiments. The Ta2B/MoSSe heterostructures exhibit exceptional mechanical robustness, making them highly suitable for integration into solid-state devices. Furthermore, all stacking configurations of the 1T(2H)-Ta2B/MoSSe heterostructures form n-type Schottky contacts, which can be effectively tuned by altering the stacking arrangements. Our findings indicate that, regardless of whether the metallic Ta2B layer is stacked on the S or Se side of the MoSSe monolayer, electron conduction dominates charge transport in the heterostructures. This inherent n-type contact formation is advantageous for applications requiring efficient electron transport, such as high-speed electronics and optoelectronic devices. Notably, the Ta2B/MoSSe heterostructures demonstrate low contact resistance, making them promising candidates for next-generation electronic devices. These findings provide critical insights into the fundamental properties of Ta2B/MoSSe heterostructures, underscoring their potential for next-generation electronic devices.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr01589h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr01589h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属半导体异质结构在现代电子产品中至关重要,它提供了一个关键的接口,控制载流子传输,并显著影响器件的性能和功能。在本研究中,我们使用第一性原理计算系统地研究了1T型和2h型Ta2B/MoSSe异质结构的结构、电子、力学和接触性能。我们的研究结果证实,这两种异质结构在能量、动态和机械上都是稳定的,Ta2B和MoSSe层通过范德华力(vdW)保持在一起,确保了未来实验中的稳定性和潜在的剥离。Ta2B/MoSSe异质结构表现出优异的机械坚固性,使其非常适合集成到固态器件中。此外,1T(2H)-Ta2B/MoSSe异质结构的所有堆叠构型都形成了n型肖特基触点,通过改变堆叠排列可以有效地调节这种触点。我们的研究结果表明,无论金属Ta2B层是堆叠在MoSSe单层的S侧还是Se侧,电子传导主导着异质结构中的电荷传输。这种固有的n型接触形成对于需要高效电子传输的应用是有利的,例如高速电子和光电子器件。值得注意的是,Ta2B/MoSSe异质结构表现出低接触电阻,使其成为下一代电子器件的有希望的候选者。这些发现为Ta2B/MoSSe异质结构的基本特性提供了重要的见解,强调了它们在下一代电子器件中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electronic Properties and Interfacial Engineering of metal-semiconductor 1T-, 2H -Ta2B MBene/Janus MoSSe Heterostructures
Metal-semiconductor heterostructures are pivotal in modern electronics, offering a crucial interface that governs carrier transport and significantly impacts device performance and functionality. In this study, we systematically investigate the structural, electronic, mechanical, and contact properties of the 1T- and 2H-type Ta2B/MoSSe heterostructures using first-principles calculations. Our results confirm that both heterostructures are energetically, dynamically, and mechanically stable, with the Ta2B and MoSSe layers held together by van der Waals (vdW) forces, ensuring stability and potential exfoliation in future experiments. The Ta2B/MoSSe heterostructures exhibit exceptional mechanical robustness, making them highly suitable for integration into solid-state devices. Furthermore, all stacking configurations of the 1T(2H)-Ta2B/MoSSe heterostructures form n-type Schottky contacts, which can be effectively tuned by altering the stacking arrangements. Our findings indicate that, regardless of whether the metallic Ta2B layer is stacked on the S or Se side of the MoSSe monolayer, electron conduction dominates charge transport in the heterostructures. This inherent n-type contact formation is advantageous for applications requiring efficient electron transport, such as high-speed electronics and optoelectronic devices. Notably, the Ta2B/MoSSe heterostructures demonstrate low contact resistance, making them promising candidates for next-generation electronic devices. These findings provide critical insights into the fundamental properties of Ta2B/MoSSe heterostructures, underscoring their potential for next-generation electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信