低频振荡-认知稳定性和灵活性的神经相关

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Julia Ericson, Nieves Ruiz Ibáñez, Mikael Lundqvist, Torkel Klingberg
{"title":"低频振荡-认知稳定性和灵活性的神经相关","authors":"Julia Ericson, Nieves Ruiz Ibáñez, Mikael Lundqvist, Torkel Klingberg","doi":"10.1038/s41467-025-60821-2","DOIUrl":null,"url":null,"abstract":"<p>Cognitive processing relies on the brain’s ability to balance flexibility for encoding new information with stability for maintaining it. We examined these dynamics in three magnetoencephalography (MEG) datasets of visuospatial working memory (vsWM) tasks. Across all tasks, we identified four distinct networks in the theta and alpha bands, which were used to define functional states. Optimal transitioning rate between states was associated with better cognitive performance. Further, two of the states were linked to flexibility and stability, respectively: an encoding state dominated by a posterior theta and a maintenance state dominated by a dorsal alpha. We simulated the states in an in-silico model with biologically realistic cortical connectivity. The model, featuring spiking and oscillatory cortical layers interacting via phase-amplitude coupling, demonstrated how frequency and spatial region could modulate information flow. Our findings suggest a cognitive control mechanism, where selective transitions between large-scale networks optimize information flow, enabling both stable and flexible visual representations.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low frequency oscillations – neural correlates of stability and flexibility in cognition\",\"authors\":\"Julia Ericson, Nieves Ruiz Ibáñez, Mikael Lundqvist, Torkel Klingberg\",\"doi\":\"10.1038/s41467-025-60821-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cognitive processing relies on the brain’s ability to balance flexibility for encoding new information with stability for maintaining it. We examined these dynamics in three magnetoencephalography (MEG) datasets of visuospatial working memory (vsWM) tasks. Across all tasks, we identified four distinct networks in the theta and alpha bands, which were used to define functional states. Optimal transitioning rate between states was associated with better cognitive performance. Further, two of the states were linked to flexibility and stability, respectively: an encoding state dominated by a posterior theta and a maintenance state dominated by a dorsal alpha. We simulated the states in an in-silico model with biologically realistic cortical connectivity. The model, featuring spiking and oscillatory cortical layers interacting via phase-amplitude coupling, demonstrated how frequency and spatial region could modulate information flow. Our findings suggest a cognitive control mechanism, where selective transitions between large-scale networks optimize information flow, enabling both stable and flexible visual representations.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60821-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60821-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

认知处理依赖于大脑平衡编码新信息的灵活性和保持信息的稳定性的能力。我们在视觉空间工作记忆(vsWM)任务的三个脑磁图(MEG)数据集中研究了这些动态。在所有的任务中,我们在θ和α波段中确定了四个不同的网络,它们被用来定义功能状态。状态之间的最佳转换速率与更好的认知表现相关。此外,有两种状态分别与灵活性和稳定性有关:一种是由后θ主导的编码状态,另一种是由后α主导的维持状态。我们在一个具有生物学上真实的皮层连接的计算机模型中模拟了这些状态。该模型通过相位-振幅耦合展示了频率和空间区域如何调节信息流。我们的研究结果表明了一种认知控制机制,其中大规模网络之间的选择性转换优化了信息流,从而实现了稳定和灵活的视觉表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low frequency oscillations – neural correlates of stability and flexibility in cognition

Low frequency oscillations – neural correlates of stability and flexibility in cognition

Cognitive processing relies on the brain’s ability to balance flexibility for encoding new information with stability for maintaining it. We examined these dynamics in three magnetoencephalography (MEG) datasets of visuospatial working memory (vsWM) tasks. Across all tasks, we identified four distinct networks in the theta and alpha bands, which were used to define functional states. Optimal transitioning rate between states was associated with better cognitive performance. Further, two of the states were linked to flexibility and stability, respectively: an encoding state dominated by a posterior theta and a maintenance state dominated by a dorsal alpha. We simulated the states in an in-silico model with biologically realistic cortical connectivity. The model, featuring spiking and oscillatory cortical layers interacting via phase-amplitude coupling, demonstrated how frequency and spatial region could modulate information flow. Our findings suggest a cognitive control mechanism, where selective transitions between large-scale networks optimize information flow, enabling both stable and flexible visual representations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信