{"title":"与量子催化剂的通信","authors":"Yuqi Li, Junjing Xing, Dengke Qu, Lei Xiao, Zhaobing Fan, Zhu-Jun Zheng, Haitao Ma, Peng Xue, Kishor Bharti, Dax Enshan Koh and Yunlong Xiao","doi":"10.1088/2058-9565/ade284","DOIUrl":null,"url":null,"abstract":"Communication is essential for advancing science and technology. Quantum communication, in particular, benefits from the use of catalysts. During the communication process, these catalysts enhance performance while remaining unchanged. Although chemical catalysts that undergo deactivation typically perform worse than those that remain unaffected, quantum catalysts, referred to as embezzling catalysts, can surprisingly outperform their non-deactivating counterparts despite experiencing slight alterations. In this work, we employ embezzling quantum catalysts to enhance the transmission of both quantum and classical information. By utilizing finite-dimensional embezzling catalysts, we guarantee a non-zero catalytic channel capacity for any quantum channel while keeping variations in the catalytic system arbitrarily small. Our protocol also improves long-distance entanglement distribution. Furthermore, we introduce catalytic superdense coding, demonstrating how embezzling catalysts can boost the transmission of classical information. Finally, we explore methods to reduce the dimensionality of catalysts, a step toward making quantum catalysis a practical reality.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"53 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Communication with quantum catalysts\",\"authors\":\"Yuqi Li, Junjing Xing, Dengke Qu, Lei Xiao, Zhaobing Fan, Zhu-Jun Zheng, Haitao Ma, Peng Xue, Kishor Bharti, Dax Enshan Koh and Yunlong Xiao\",\"doi\":\"10.1088/2058-9565/ade284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communication is essential for advancing science and technology. Quantum communication, in particular, benefits from the use of catalysts. During the communication process, these catalysts enhance performance while remaining unchanged. Although chemical catalysts that undergo deactivation typically perform worse than those that remain unaffected, quantum catalysts, referred to as embezzling catalysts, can surprisingly outperform their non-deactivating counterparts despite experiencing slight alterations. In this work, we employ embezzling quantum catalysts to enhance the transmission of both quantum and classical information. By utilizing finite-dimensional embezzling catalysts, we guarantee a non-zero catalytic channel capacity for any quantum channel while keeping variations in the catalytic system arbitrarily small. Our protocol also improves long-distance entanglement distribution. Furthermore, we introduce catalytic superdense coding, demonstrating how embezzling catalysts can boost the transmission of classical information. Finally, we explore methods to reduce the dimensionality of catalysts, a step toward making quantum catalysis a practical reality.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ade284\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ade284","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Communication is essential for advancing science and technology. Quantum communication, in particular, benefits from the use of catalysts. During the communication process, these catalysts enhance performance while remaining unchanged. Although chemical catalysts that undergo deactivation typically perform worse than those that remain unaffected, quantum catalysts, referred to as embezzling catalysts, can surprisingly outperform their non-deactivating counterparts despite experiencing slight alterations. In this work, we employ embezzling quantum catalysts to enhance the transmission of both quantum and classical information. By utilizing finite-dimensional embezzling catalysts, we guarantee a non-zero catalytic channel capacity for any quantum channel while keeping variations in the catalytic system arbitrarily small. Our protocol also improves long-distance entanglement distribution. Furthermore, we introduce catalytic superdense coding, demonstrating how embezzling catalysts can boost the transmission of classical information. Finally, we explore methods to reduce the dimensionality of catalysts, a step toward making quantum catalysis a practical reality.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.