自旋交叉材料中刺激响应低频太赫兹吸收的开关性。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guanping Li,Olaf Stefanczyk,Kunal Kumar,Laurent Guérin,Kazuki Nakamura,Maryam Alashoor,Lulu Xiong,Koji Nakabayashi,Kenta Imoto,Yuiga Nakamura,Sumit Ranjan Maity,Guillaume Chastanet,Nicholas F Chilton,Shin-Ichi Ohkoshi
{"title":"自旋交叉材料中刺激响应低频太赫兹吸收的开关性。","authors":"Guanping Li,Olaf Stefanczyk,Kunal Kumar,Laurent Guérin,Kazuki Nakamura,Maryam Alashoor,Lulu Xiong,Koji Nakabayashi,Kenta Imoto,Yuiga Nakamura,Sumit Ranjan Maity,Guillaume Chastanet,Nicholas F Chilton,Shin-Ichi Ohkoshi","doi":"10.1002/adma.202507457","DOIUrl":null,"url":null,"abstract":"Thermal and optical-induced ON-OFF switchable materials show vast potential in various fields like sensors, spintronics, and electronic devices, but remain underexplored in the essential terahertz (THz) region. In this context, a unique 1D spin-crossover (SCO) network, {[FeII(4-cyanopyridine)2][HgII(µ-SCN)2(SCN)(4-cyanopyridine)]2}n (1), has been designed. Temperature-dependent crystallographic, magnetic, and THz absorption spectroscopic studies indicate an abrupt SCO phenomenon from a high-spin (HS) state to a complete or partial low-spin (LS) state, depending on the cooling rate. At low temperatures, the LS state can be converted into the metastable HS state via the light-induced excited spin-state trapping (LIESST) effect using visible or near-infrared lights. Both temperature and light reversibly modulate the THz absorbance (e.g., 0.82 and 1.37 THz) associated with phonons around Fe(II) centers, confirmed by first-principles calculations and photocrystallographic analysis. This work advances comprehension of the intersection between structures, THz properties, and external-stimuli switching effects and is pivotal for future THz device applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"45 1","pages":"e2507457"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimuli-Responsive Low-Frequency Terahertz Absorption ON-OFF Switchability in Spin-Crossover Material.\",\"authors\":\"Guanping Li,Olaf Stefanczyk,Kunal Kumar,Laurent Guérin,Kazuki Nakamura,Maryam Alashoor,Lulu Xiong,Koji Nakabayashi,Kenta Imoto,Yuiga Nakamura,Sumit Ranjan Maity,Guillaume Chastanet,Nicholas F Chilton,Shin-Ichi Ohkoshi\",\"doi\":\"10.1002/adma.202507457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal and optical-induced ON-OFF switchable materials show vast potential in various fields like sensors, spintronics, and electronic devices, but remain underexplored in the essential terahertz (THz) region. In this context, a unique 1D spin-crossover (SCO) network, {[FeII(4-cyanopyridine)2][HgII(µ-SCN)2(SCN)(4-cyanopyridine)]2}n (1), has been designed. Temperature-dependent crystallographic, magnetic, and THz absorption spectroscopic studies indicate an abrupt SCO phenomenon from a high-spin (HS) state to a complete or partial low-spin (LS) state, depending on the cooling rate. At low temperatures, the LS state can be converted into the metastable HS state via the light-induced excited spin-state trapping (LIESST) effect using visible or near-infrared lights. Both temperature and light reversibly modulate the THz absorbance (e.g., 0.82 and 1.37 THz) associated with phonons around Fe(II) centers, confirmed by first-principles calculations and photocrystallographic analysis. This work advances comprehension of the intersection between structures, THz properties, and external-stimuli switching effects and is pivotal for future THz device applications.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"45 1\",\"pages\":\"e2507457\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202507457\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202507457","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热和光诱导的开关材料在传感器、自旋电子学和电子器件等各个领域显示出巨大的潜力,但在太赫兹(THz)区域仍未得到充分开发。在此背景下,设计了一个独特的一维自旋交叉(SCO)网络{[FeII(4-氰吡啶)2][HgII(µ-SCN)2(SCN)(4-氰吡啶)]2}n(1)。温度相关的晶体学、磁性和太赫兹吸收光谱研究表明,根据冷却速率,从高自旋(HS)状态到完全或部分低自旋(LS)状态的突然SCO现象。在低温下,利用可见光或近红外光通过光诱导激发自旋态捕获(LIESST)效应将LS态转化为亚稳态HS态。温度和光都可逆地调节与Fe(II)中心周围声子相关的太赫兹吸光度(例如,0.82和1.37太赫兹),这被第一原理计算和光晶体分析证实。这项工作促进了对结构、太赫兹特性和外部刺激开关效应之间交集的理解,对未来太赫兹器件的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stimuli-Responsive Low-Frequency Terahertz Absorption ON-OFF Switchability in Spin-Crossover Material.
Thermal and optical-induced ON-OFF switchable materials show vast potential in various fields like sensors, spintronics, and electronic devices, but remain underexplored in the essential terahertz (THz) region. In this context, a unique 1D spin-crossover (SCO) network, {[FeII(4-cyanopyridine)2][HgII(µ-SCN)2(SCN)(4-cyanopyridine)]2}n (1), has been designed. Temperature-dependent crystallographic, magnetic, and THz absorption spectroscopic studies indicate an abrupt SCO phenomenon from a high-spin (HS) state to a complete or partial low-spin (LS) state, depending on the cooling rate. At low temperatures, the LS state can be converted into the metastable HS state via the light-induced excited spin-state trapping (LIESST) effect using visible or near-infrared lights. Both temperature and light reversibly modulate the THz absorbance (e.g., 0.82 and 1.37 THz) associated with phonons around Fe(II) centers, confirmed by first-principles calculations and photocrystallographic analysis. This work advances comprehension of the intersection between structures, THz properties, and external-stimuli switching effects and is pivotal for future THz device applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信