{"title":"异质结驱动的随机性:双异质结噪声增强负跨导晶体管在图像生成中的应用。","authors":"Youngmin Han, Ryun-Han Koo, Jaechan Song, Chang-Hyun Kim, Eun Kwang Lee, Wonjun Shin, Hocheon Yoo","doi":"10.1002/adma.202505150","DOIUrl":null,"url":null,"abstract":"<p>Reliable true-random number generator (TRNG) hardware demands amplified intrinsic noise and multi-bit entropy output, which are difficult to achieve in conventional single-device TRNG implementation. A bi-heterojunction noise-enhanced negative transconductance (BHN-NTC) transistor is presented, incorporating an asymmetric PTCDI-C13 layer into an NTC transistor. This design enhances electron injection, expanding the NTC region (19 → 27 V) and increasing negative transconductance (−0.036 µS at <i>V</i><sub>GS</sub> = −11 V → −0.073 µS at <i>V</i><sub>GS</sub> = −15 V) by reducing the electron injection barrier (≈2.13 eV → ≈0.41 eV). The bi-heterojunction configuration introduces a strong correlation between noises, including trapping/detrapping and generation/recombination processes. This property enables a threefold higher entropy throughput in TRNG, achieving a 3-bit output per sampling event. The BHN-NTC-driven TRNG leverages increased noise-induced entropy to generate more diverse latent vectors, mitigating mode collapse and enabling the synthesis of high-quality, realistic images. This significantly enhances StyleGAN2-based image generation, improving performance metrics such as Frechet inception distance (FID) (18.7 → 8.3), kernel inception distance (KID) (0.024 → 0.009), inception score (IS) (6.5 → 9.2), and multi-scale structural similarity (MS-SSIM) (0.43 → 0.21). Consequently, the BHN-NTC transistor establishes a scalable stochastic noise platform, advancing applications in secure electronics and probabilistic stochastic computing.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 41","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202505150","citationCount":"0","resultStr":"{\"title\":\"Heterojunction-Driven Stochasticity: Bi-Heterojunction Noise-Enhanced Negative Transconductance Transistor in Image Generation\",\"authors\":\"Youngmin Han, Ryun-Han Koo, Jaechan Song, Chang-Hyun Kim, Eun Kwang Lee, Wonjun Shin, Hocheon Yoo\",\"doi\":\"10.1002/adma.202505150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reliable true-random number generator (TRNG) hardware demands amplified intrinsic noise and multi-bit entropy output, which are difficult to achieve in conventional single-device TRNG implementation. A bi-heterojunction noise-enhanced negative transconductance (BHN-NTC) transistor is presented, incorporating an asymmetric PTCDI-C13 layer into an NTC transistor. This design enhances electron injection, expanding the NTC region (19 → 27 V) and increasing negative transconductance (−0.036 µS at <i>V</i><sub>GS</sub> = −11 V → −0.073 µS at <i>V</i><sub>GS</sub> = −15 V) by reducing the electron injection barrier (≈2.13 eV → ≈0.41 eV). The bi-heterojunction configuration introduces a strong correlation between noises, including trapping/detrapping and generation/recombination processes. This property enables a threefold higher entropy throughput in TRNG, achieving a 3-bit output per sampling event. The BHN-NTC-driven TRNG leverages increased noise-induced entropy to generate more diverse latent vectors, mitigating mode collapse and enabling the synthesis of high-quality, realistic images. This significantly enhances StyleGAN2-based image generation, improving performance metrics such as Frechet inception distance (FID) (18.7 → 8.3), kernel inception distance (KID) (0.024 → 0.009), inception score (IS) (6.5 → 9.2), and multi-scale structural similarity (MS-SSIM) (0.43 → 0.21). Consequently, the BHN-NTC transistor establishes a scalable stochastic noise platform, advancing applications in secure electronics and probabilistic stochastic computing.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 41\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202505150\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202505150\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202505150","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Heterojunction-Driven Stochasticity: Bi-Heterojunction Noise-Enhanced Negative Transconductance Transistor in Image Generation
Reliable true-random number generator (TRNG) hardware demands amplified intrinsic noise and multi-bit entropy output, which are difficult to achieve in conventional single-device TRNG implementation. A bi-heterojunction noise-enhanced negative transconductance (BHN-NTC) transistor is presented, incorporating an asymmetric PTCDI-C13 layer into an NTC transistor. This design enhances electron injection, expanding the NTC region (19 → 27 V) and increasing negative transconductance (−0.036 µS at VGS = −11 V → −0.073 µS at VGS = −15 V) by reducing the electron injection barrier (≈2.13 eV → ≈0.41 eV). The bi-heterojunction configuration introduces a strong correlation between noises, including trapping/detrapping and generation/recombination processes. This property enables a threefold higher entropy throughput in TRNG, achieving a 3-bit output per sampling event. The BHN-NTC-driven TRNG leverages increased noise-induced entropy to generate more diverse latent vectors, mitigating mode collapse and enabling the synthesis of high-quality, realistic images. This significantly enhances StyleGAN2-based image generation, improving performance metrics such as Frechet inception distance (FID) (18.7 → 8.3), kernel inception distance (KID) (0.024 → 0.009), inception score (IS) (6.5 → 9.2), and multi-scale structural similarity (MS-SSIM) (0.43 → 0.21). Consequently, the BHN-NTC transistor establishes a scalable stochastic noise platform, advancing applications in secure electronics and probabilistic stochastic computing.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.